Досталась мне на работе система, за которую до недавних пор отвечал умный, но неопытный PhD. Задача по сути сводится к text classification, внутри некий трансформер и все по классике: много кастомного, вычурный оптимайзер, дубликаты в данных и так далее. И, конечно, все надо улучшать - от точности до скорости.
В комплекте с системой полагался въедливый коллега, который с радостью согласился пойти разгребать авгиевы конюшни датасетов. А я взялся за инженерную часть. Кое-какая инфраструктура уже была: тесты, CI, обучение в докере - до этого мы с другим коллегой занимались переносом этого хозяйства из jupyter ноутбуков во что-то воспроизводимое. Так что надо можно было более или менее смело лезть в сам training pipeline.
Обучение занимало ~10-11 часов на одной A100, что в целом приемлемо, но, судя по низкой нагрузке и CPU, и GPU, можно было сделать лучше. Перенес часть препроцессинга из __getitem__ в __init__, избавился от pandas, выкинул лишние данные из памяти, что-то закэшировал, увеличил количество воркеров для датасетов, увеличил батчи - и GPU стала загружаться на ~95-98%, а обучение стало втрое быстрее. С такими скоростями уже можно быстро итерироваться.
Основная модель весила больше гигабайта. Я посмотрел на граф и обнаружил, что больше половины весов - это жирная мультиязычная embedding матрица инпута. Пошел в Athena и добыл неразмеченный датасет вида SELECT * FROM DATA WHERE THINGS ARE NOT LIKE FULL GARBAGE LIMIT OVERDOHOOYA, прогнал его через токенайзер, подтвердил гипотезу, что реально используется <50% токенов. Значит, можно переучить токенайзер и заменить эмбеддинг слой на значительно меньший, предварительно скопировав предобученные веса полезных токенов. Это уменьшает размер модели примерно до 60% от оригинального (правда, без заметного эффекта на скорости инференса). Потребление памяти важно для рантайма, ведь можно держать в памяти одного инстанса больше моделей, там как раз был боттлнек.
Кстати, раз у нас есть большой неразмеченный датасет, это звучит как повод устроить pretraining. Адаптировал masked language pretraining пайплайн с huggingface 🤗, и оставил новую, уже уменьшенную модель учиться на недельку. И, наконец, заменил дефолтные веса в основном пайплайне на результат претрейна на этом неразмеченном датасете. Это не только улучшило точность (на разных тестовых датасетах от 10% до 20%) и вторичные метрики вроде калибровки, но и ускорило сходимость, т.е. можно безболезненно уменьшить количество эпох еще на треть.
Итого: за пару недель работы обучение ускорено, потребление памяти упало, точность выросла. Важно подчеркнуть, что ничего из перечисленного не содержало никаких сложных алгоритмов. Если ты не OpenAI, то просто нормально делай - нормально будет.
Досталась мне на работе система, за которую до недавних пор отвечал умный, но неопытный PhD. Задача по сути сводится к text classification, внутри некий трансформер и все по классике: много кастомного, вычурный оптимайзер, дубликаты в данных и так далее. И, конечно, все надо улучшать - от точности до скорости.
В комплекте с системой полагался въедливый коллега, который с радостью согласился пойти разгребать авгиевы конюшни датасетов. А я взялся за инженерную часть. Кое-какая инфраструктура уже была: тесты, CI, обучение в докере - до этого мы с другим коллегой занимались переносом этого хозяйства из jupyter ноутбуков во что-то воспроизводимое. Так что надо можно было более или менее смело лезть в сам training pipeline.
Обучение занимало ~10-11 часов на одной A100, что в целом приемлемо, но, судя по низкой нагрузке и CPU, и GPU, можно было сделать лучше. Перенес часть препроцессинга из __getitem__ в __init__, избавился от pandas, выкинул лишние данные из памяти, что-то закэшировал, увеличил количество воркеров для датасетов, увеличил батчи - и GPU стала загружаться на ~95-98%, а обучение стало втрое быстрее. С такими скоростями уже можно быстро итерироваться.
Основная модель весила больше гигабайта. Я посмотрел на граф и обнаружил, что больше половины весов - это жирная мультиязычная embedding матрица инпута. Пошел в Athena и добыл неразмеченный датасет вида SELECT * FROM DATA WHERE THINGS ARE NOT LIKE FULL GARBAGE LIMIT OVERDOHOOYA, прогнал его через токенайзер, подтвердил гипотезу, что реально используется <50% токенов. Значит, можно переучить токенайзер и заменить эмбеддинг слой на значительно меньший, предварительно скопировав предобученные веса полезных токенов. Это уменьшает размер модели примерно до 60% от оригинального (правда, без заметного эффекта на скорости инференса). Потребление памяти важно для рантайма, ведь можно держать в памяти одного инстанса больше моделей, там как раз был боттлнек.
Кстати, раз у нас есть большой неразмеченный датасет, это звучит как повод устроить pretraining. Адаптировал masked language pretraining пайплайн с huggingface 🤗, и оставил новую, уже уменьшенную модель учиться на недельку. И, наконец, заменил дефолтные веса в основном пайплайне на результат претрейна на этом неразмеченном датасете. Это не только улучшило точность (на разных тестовых датасетах от 10% до 20%) и вторичные метрики вроде калибровки, но и ускорило сходимость, т.е. можно безболезненно уменьшить количество эпох еще на треть.
Итого: за пару недель работы обучение ускорено, потребление памяти упало, точность выросла. Важно подчеркнуть, что ничего из перечисленного не содержало никаких сложных алгоритмов. Если ты не OpenAI, то просто нормально делай - нормально будет.
BY partially unsupervised
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge.
from ar