Telegram Group & Telegram Channel
#interpretable_ml

PFI (permutation feature importance). Что это такое и как работает?

В PFI есть слово permuatation. Оно, собственно, и определяет, что мы будем делать. Давайте для каждого признака будем "перемешивать" значения и смотреть, насколько изменилась наша ошибка предсказаний. Получаем весьма простой модельно-агностический (независимый от реализации конкретного алгоритма обучения) метод.

Плюсы метода:
1. Легко интерпретировать - мы понимаем, насколько изменяется качество модели при "разрушении" признака;
2. Можно сравнивать результаты между разными моделями;
3. Помимо важности самого признака, мы еще автоматически учитываем и важность взаимодействий между признаками (если мы "перемешали" признак, то мы "перемешали" и все взаимодействия между признаками);
4. Нам не нужно переобучать модель. То есть, мы не тратим время и вычислительные ресурсы на новые циклы обучения.

Минусы метода:
1. Мы привязаны к определению ошибки. То есть, важность признака зависима от той метрики, ухудшение которой мы мониторим;
2. Нужно знать реальные таргеты. Если у нас только модель и неразмеченные данные - то мы не можем вычислить важность признаков;
3. Учитывая случайность перестановок, наши результаты могут меняться от запуска к запуску (причем, весьма сильно);
4. У нас может возникать смещение в наших оценках из-за нереалистичных точек данных. Например, если мы случайно пересортируем рост, но оставим вес, то может получиться точка данных с ростом 185 см и весом 10 кг (что невероятно);
5. Наличие коррелированных признаков может снижать важность группы признаков, т.к. общая "важность" может "расщепляться" между этими признаками.

В итоге, метод весьма неплохой, но со своими минусами (причем, достаточно важными минусами). Если хотите поиграть с методом, можете взять пример реализации из sklearn.



group-telegram.com/artificial_stupid/322
Create:
Last Update:

#interpretable_ml

PFI (permutation feature importance). Что это такое и как работает?

В PFI есть слово permuatation. Оно, собственно, и определяет, что мы будем делать. Давайте для каждого признака будем "перемешивать" значения и смотреть, насколько изменилась наша ошибка предсказаний. Получаем весьма простой модельно-агностический (независимый от реализации конкретного алгоритма обучения) метод.

Плюсы метода:
1. Легко интерпретировать - мы понимаем, насколько изменяется качество модели при "разрушении" признака;
2. Можно сравнивать результаты между разными моделями;
3. Помимо важности самого признака, мы еще автоматически учитываем и важность взаимодействий между признаками (если мы "перемешали" признак, то мы "перемешали" и все взаимодействия между признаками);
4. Нам не нужно переобучать модель. То есть, мы не тратим время и вычислительные ресурсы на новые циклы обучения.

Минусы метода:
1. Мы привязаны к определению ошибки. То есть, важность признака зависима от той метрики, ухудшение которой мы мониторим;
2. Нужно знать реальные таргеты. Если у нас только модель и неразмеченные данные - то мы не можем вычислить важность признаков;
3. Учитывая случайность перестановок, наши результаты могут меняться от запуска к запуску (причем, весьма сильно);
4. У нас может возникать смещение в наших оценках из-за нереалистичных точек данных. Например, если мы случайно пересортируем рост, но оставим вес, то может получиться точка данных с ростом 185 см и весом 10 кг (что невероятно);
5. Наличие коррелированных признаков может снижать важность группы признаков, т.к. общая "важность" может "расщепляться" между этими признаками.

В итоге, метод весьма неплохой, но со своими минусами (причем, достаточно важными минусами). Если хотите поиграть с методом, можете взять пример реализации из sklearn.

BY Artificial stupidity


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/artificial_stupid/322

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. 'Wild West'
from us


Telegram Artificial stupidity
FROM American