Telegram Group & Telegram Channel
#ml #llm

(Zero-)(One-)Few-Shot Learning.

Продолжаем про техники работы с промптами. Сегодня поговорим об использовании примеров решения задачи в промпте.

Идея тут достаточно простая: если показать модели примеры правильного решения задачи, то ей сильно проще будет сделать похожее действие. Собственно, все эти цифры в названии и обозначают число примеров (то нуля до нескольких).

Например, мы хотим в промпте попросить модель оценить, позитивное или негативное высказывание мы подали на вход (то есть, решаем задачу sentiment analysis). В таком случае, мы можем дать несколько примеров того, какой текст мы посчитали "позитивным", а какой "негативным".

Но стоит учитывать, что:
1. Важно учитывать реальное распределение меток.
Например, в той же задаче sentiment analysis. Если мы приведем слишком много позитивных примеров, то модель может начать считать, что выгоднее отвечать более позитивно. Это, в свою очередь, исказит получаемые результаты;
2. Использование примеров влияет на результаты.
Удивительно, но даже не очень точные пользовательские примеры могут улучшать результирующие ответы LLM. Поэтому, добавление примеров – это скорее позитивное изменение промпта, улучшающее качество наших результатов;
3. Few-shot техники имеют свои ограничения.
В случае простых запросов, few-shot подход может быть сильной техникой. Но для более сложных задач, требующих рассуждений, наш подход с примерами может не срабатывать. Чем-то похоже на мем "дорисуй сову". Даже если есть несколько примеров дорисовывания совы из пары кругов - это не значит, что среднему человеку удастся хорошо научиться ее рисовать ;)



group-telegram.com/artificial_stupid/390
Create:
Last Update:

#ml #llm

(Zero-)(One-)Few-Shot Learning.

Продолжаем про техники работы с промптами. Сегодня поговорим об использовании примеров решения задачи в промпте.

Идея тут достаточно простая: если показать модели примеры правильного решения задачи, то ей сильно проще будет сделать похожее действие. Собственно, все эти цифры в названии и обозначают число примеров (то нуля до нескольких).

Например, мы хотим в промпте попросить модель оценить, позитивное или негативное высказывание мы подали на вход (то есть, решаем задачу sentiment analysis). В таком случае, мы можем дать несколько примеров того, какой текст мы посчитали "позитивным", а какой "негативным".

Но стоит учитывать, что:
1. Важно учитывать реальное распределение меток.
Например, в той же задаче sentiment analysis. Если мы приведем слишком много позитивных примеров, то модель может начать считать, что выгоднее отвечать более позитивно. Это, в свою очередь, исказит получаемые результаты;
2. Использование примеров влияет на результаты.
Удивительно, но даже не очень точные пользовательские примеры могут улучшать результирующие ответы LLM. Поэтому, добавление примеров – это скорее позитивное изменение промпта, улучшающее качество наших результатов;
3. Few-shot техники имеют свои ограничения.
В случае простых запросов, few-shot подход может быть сильной техникой. Но для более сложных задач, требующих рассуждений, наш подход с примерами может не срабатывать. Чем-то похоже на мем "дорисуй сову". Даже если есть несколько примеров дорисовывания совы из пары кругов - это не значит, что среднему человеку удастся хорошо научиться ее рисовать ;)

BY Artificial stupidity


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/artificial_stupid/390

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. Some privacy experts say Telegram is not secure enough The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from us


Telegram Artificial stupidity
FROM American