Telegram Group & Telegram Channel
Как доказывать касание окружностей

Начнем небольшую серию постов, в которой рассмотрим полезные мысли и леммы, помогающие доказывать касание окружностей, и научимся их применять

Мысли:
1. Чаще всего точка касания угадывается. Почти всегда причиной касания является то, что нужные нам окружности просто всегда имеют хорошую общую точку, но нам повезло, и углы такие, что окружности коснулись. А как искать хорошую точку на описанной окружности треугольника? Например, можно взять 3 прямые, содержащие стороны этого треугольника, добавить к ним четвертую прямую и рассмотреть точку Микеля этой четвёрки. Через неё как раз пройдёт 4 окружности, которые помогут поперекидывать углы. Только четвёртую прямую нужно выбирать более менее нормальную.

*Ещё иногда точкой касания является антиштейнер какой то хорошей прямой. Если нет явно заданной прямой через Н, то антиштейнер прямой заданного направления. Вайб такого случая это отражения точек/прямых относительно сторон базового треугольника или явная прямая через Н.

2. Также бывает более глубокая причина касания окружностей, чем уголки. Иногда можно получить касающиеся окружности из уже касающихся объектов на рисунке с помощью поворотной гомотетии или инверсии.

3. Можно попробовать найти на картинке теорему Фейербаха (или какие-то другие известные касания).

Леммы:
1. Слабая теорема Кейси (Кузи) (рис. 1)
Пусть на плоскости даны окружность ω и три точки A, B, C вне неё, не лежащие на одной прямой. Обозначим
длины отрезков касательных из точек A, B, C к окружности ω через ta, tb, tc соответственно. Тогда окружность (ABC) касается окружности ω тогда и только тогда, когда для некоторой расстановки знаков выполнено соотношение
±taBC ± tbCA ± tcAB = 0

Полезно, когда считаются отрезки или явно фигурируют касательные.

2. Очев лемма (рис. 2)
Окружности касаются тогда только тогда, когда Сумма/разность радусов = расстояние между их центрами.

Работает, когда ничего больше не работает. Обычно в таких задачах удобно считаются радиусы окружностей.

3. Лемма о сегменте (рис. 3)
Точка I – инцентр треугольника ABC. Окружность ω с центром в точке O проходит через вершины B и C. Точка Х на AB такова, что ∠BXI = ¼∠BOC. Тогда окружность, вписанная в угол A и касающаяся стороны АВ в точке X, касается ω.

4. Лемма Саваямы (рис. 4)
На стороне BC треугольника ABC выбрана точка X. Тогда окружность, вписанная в угол BXA и касающаяся его сторон в точках P и Q, касается (ABC) тогда и только тогда, когда PQ содержит инцентр (или эксцентр) треугольника АВС.

Полезно подумать о том, что точка Х выбрана не совсем "симметрично". И получить ещё несколько фактов.

5. Лемма с изогоналями (обобщение леммы Архимеда) (рис. 5-6)
Иногда удобнее доказывать изогональность или что какая-то прямая является биссектрисой (например, с помощью счета отрезков), вместо того, чтобы искать угол между касательной и хордой.
Ещё у неё есть прикольное обобщение.

6. Полезная лемма без названия (рис. 7)
Внутри треугольника ABC выбрана точка R. Касательная к (BRC) пересекает стороны AB и AC в точках P и Q соответственно. Точка Х находится на дуге BC, не содержащей точку А. Утверждается, что (PXQ) касается (ABC) тогда и только тогда, когда ∠BAC + ∠PXQ = ∠BRC
Узнал про неё отсюда.



group-telegram.com/botgeom/328
Create:
Last Update:

Как доказывать касание окружностей

Начнем небольшую серию постов, в которой рассмотрим полезные мысли и леммы, помогающие доказывать касание окружностей, и научимся их применять

Мысли:
1. Чаще всего точка касания угадывается. Почти всегда причиной касания является то, что нужные нам окружности просто всегда имеют хорошую общую точку, но нам повезло, и углы такие, что окружности коснулись. А как искать хорошую точку на описанной окружности треугольника? Например, можно взять 3 прямые, содержащие стороны этого треугольника, добавить к ним четвертую прямую и рассмотреть точку Микеля этой четвёрки. Через неё как раз пройдёт 4 окружности, которые помогут поперекидывать углы. Только четвёртую прямую нужно выбирать более менее нормальную.

*Ещё иногда точкой касания является антиштейнер какой то хорошей прямой. Если нет явно заданной прямой через Н, то антиштейнер прямой заданного направления. Вайб такого случая это отражения точек/прямых относительно сторон базового треугольника или явная прямая через Н.

2. Также бывает более глубокая причина касания окружностей, чем уголки. Иногда можно получить касающиеся окружности из уже касающихся объектов на рисунке с помощью поворотной гомотетии или инверсии.

3. Можно попробовать найти на картинке теорему Фейербаха (или какие-то другие известные касания).

Леммы:
1. Слабая теорема Кейси (Кузи) (рис. 1)
Пусть на плоскости даны окружность ω и три точки A, B, C вне неё, не лежащие на одной прямой. Обозначим
длины отрезков касательных из точек A, B, C к окружности ω через ta, tb, tc соответственно. Тогда окружность (ABC) касается окружности ω тогда и только тогда, когда для некоторой расстановки знаков выполнено соотношение
±taBC ± tbCA ± tcAB = 0

Полезно, когда считаются отрезки или явно фигурируют касательные.

2. Очев лемма (рис. 2)
Окружности касаются тогда только тогда, когда Сумма/разность радусов = расстояние между их центрами.

Работает, когда ничего больше не работает. Обычно в таких задачах удобно считаются радиусы окружностей.

3. Лемма о сегменте (рис. 3)
Точка I – инцентр треугольника ABC. Окружность ω с центром в точке O проходит через вершины B и C. Точка Х на AB такова, что ∠BXI = ¼∠BOC. Тогда окружность, вписанная в угол A и касающаяся стороны АВ в точке X, касается ω.

4. Лемма Саваямы (рис. 4)
На стороне BC треугольника ABC выбрана точка X. Тогда окружность, вписанная в угол BXA и касающаяся его сторон в точках P и Q, касается (ABC) тогда и только тогда, когда PQ содержит инцентр (или эксцентр) треугольника АВС.

Полезно подумать о том, что точка Х выбрана не совсем "симметрично". И получить ещё несколько фактов.

5. Лемма с изогоналями (обобщение леммы Архимеда) (рис. 5-6)
Иногда удобнее доказывать изогональность или что какая-то прямая является биссектрисой (например, с помощью счета отрезков), вместо того, чтобы искать угол между касательной и хордой.
Ещё у неё есть прикольное обобщение.

6. Полезная лемма без названия (рис. 7)
Внутри треугольника ABC выбрана точка R. Касательная к (BRC) пересекает стороны AB и AC в точках P и Q соответственно. Точка Х находится на дуге BC, не содержащей точку А. Утверждается, что (PXQ) касается (ABC) тогда и только тогда, когда ∠BAC + ∠PXQ = ∠BRC
Узнал про неё отсюда.

BY Ботаем геому










Share with your friend now:
group-telegram.com/botgeom/328

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Founder Pavel Durov says tech is meant to set you free Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from us


Telegram Ботаем геому
FROM American