Telegram Group & Telegram Channel
🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:

import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData



group-telegram.com/data_math/785
Create:
Last Update:

🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:


import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/785

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin.
from br


Telegram Математика Дата саентиста
FROM American