Telegram Group & Telegram Channel
Новый продукт, новый повод понудеть про новую эру в BI

Databricks по-тихому выпустил свой BI. Но не простой. Назвали AI/BI Genie. Продукт умеет и в дашборды, но интересен в нём именно Generative AI.
Databricks, пожалуй, самая мощная в мире cloud дата-платформа, теперь закрывает BI пробел.
В основе лежит экспертиза Mosaic AI (куплен год назад за 1,3 млрд долларов).

Попытался понять, что уникального в этом релизе Databricks. Вот мысли:

Когда традиционные BI-вендоры создают Conversational BI в чатах, они часто делают это красиво, но не интероперабельно. Они опираются на свой дата-слой, который в BI всегда слабый. Семантический слой, как правило, отсутствует или выполнен поверхностно (исключение - Looker). Взаимодействие с внешним слоем метрик и метаданными хранилища у таких решений также поверхностное. Вот ThoughtSpot + dbt обещали что-то супернативное, но пока затихли.

Databricks, имея всё необходимое у себя — Lakehouse, Unity Catalog (дефолтный метадатастор и админка), свою трансформацию и семантический слой (yaml-файлы, определяющие метрики и связывающие физические и логические метаданные), имеет все, чтобы сделать наиболее качественный путь text->SQL->text->Viz.
Условно не нужно будет ничего, если все компоненты платформы настроены.

Главная проблема семантических моделей в том, что их нужно кому-то строить. Инженеры не умеют в бизнес-логику, а бизнес-аналитиков трудно принудить. В итоге настоящий семантический слой живет в сотнях голов разработчиков, а все попытки его зафиксировать отстают.
AI Databricks, как я понимаю, сам создаёт собственную доработанную семантическую модель, опираясь на действия пользователей и их фидбек поверх метаданных и метрик, взятых из платформы данных. Интересно, что AI просит тебя рассказать о метрике, если сам её не знает. (Кто-то точно будет над ним издеваться или неумышленно давать просто неверные знания)

Эту модель можно обучать, предзаписывая в неё промты и запросы в отношении конкретных доменов.

Идеальный путь, к которому это идёт — AI будет работать как аналитик, самостоятельно строить семантический слой и уточнять у команды: "я правильно понимаю, эта метрика определяется таким кодом и текущим значением?", а "эта её вариация — вот этим?", а дата-команда будет ему говорить: "да, да, нет, нет".

Другой плюс — сквозная безопасность на уровне Unity позволяет AI-BI давать ответы исходя из доступов пользователя, исключая необходимость доп настроек. То есть если согласован сам Databricks, дальше уже к безопасникам ходить не надо.

Лицензий отдельных вроде как нет. Но есть требования к компонентам.

Как итог, в таком сетапе - Databricks наверняка будет иметь все для самого цельного на рынке решения.

Однако остаётся вопрос: станет ли в итоге BI чат-бот (даже в идеальном свом воплощении) дополнением к производству и потреблению привычных отчётов, или дашборды останутся придатком к мейнстримному интерфейсу чат-бота?

Что думаете?



group-telegram.com/datanature/354
Create:
Last Update:

Новый продукт, новый повод понудеть про новую эру в BI

Databricks по-тихому выпустил свой BI. Но не простой. Назвали AI/BI Genie. Продукт умеет и в дашборды, но интересен в нём именно Generative AI.
Databricks, пожалуй, самая мощная в мире cloud дата-платформа, теперь закрывает BI пробел.
В основе лежит экспертиза Mosaic AI (куплен год назад за 1,3 млрд долларов).

Попытался понять, что уникального в этом релизе Databricks. Вот мысли:

Когда традиционные BI-вендоры создают Conversational BI в чатах, они часто делают это красиво, но не интероперабельно. Они опираются на свой дата-слой, который в BI всегда слабый. Семантический слой, как правило, отсутствует или выполнен поверхностно (исключение - Looker). Взаимодействие с внешним слоем метрик и метаданными хранилища у таких решений также поверхностное. Вот ThoughtSpot + dbt обещали что-то супернативное, но пока затихли.

Databricks, имея всё необходимое у себя — Lakehouse, Unity Catalog (дефолтный метадатастор и админка), свою трансформацию и семантический слой (yaml-файлы, определяющие метрики и связывающие физические и логические метаданные), имеет все, чтобы сделать наиболее качественный путь text->SQL->text->Viz.
Условно не нужно будет ничего, если все компоненты платформы настроены.

Главная проблема семантических моделей в том, что их нужно кому-то строить. Инженеры не умеют в бизнес-логику, а бизнес-аналитиков трудно принудить. В итоге настоящий семантический слой живет в сотнях голов разработчиков, а все попытки его зафиксировать отстают.
AI Databricks, как я понимаю, сам создаёт собственную доработанную семантическую модель, опираясь на действия пользователей и их фидбек поверх метаданных и метрик, взятых из платформы данных. Интересно, что AI просит тебя рассказать о метрике, если сам её не знает. (Кто-то точно будет над ним издеваться или неумышленно давать просто неверные знания)

Эту модель можно обучать, предзаписывая в неё промты и запросы в отношении конкретных доменов.

Идеальный путь, к которому это идёт — AI будет работать как аналитик, самостоятельно строить семантический слой и уточнять у команды: "я правильно понимаю, эта метрика определяется таким кодом и текущим значением?", а "эта её вариация — вот этим?", а дата-команда будет ему говорить: "да, да, нет, нет".

Другой плюс — сквозная безопасность на уровне Unity позволяет AI-BI давать ответы исходя из доступов пользователя, исключая необходимость доп настроек. То есть если согласован сам Databricks, дальше уже к безопасникам ходить не надо.

Лицензий отдельных вроде как нет. Но есть требования к компонентам.

Как итог, в таком сетапе - Databricks наверняка будет иметь все для самого цельного на рынке решения.

Однако остаётся вопрос: станет ли в итоге BI чат-бот (даже в идеальном свом воплощении) дополнением к производству и потреблению привычных отчётов, или дашборды останутся придатком к мейнстримному интерфейсу чат-бота?

Что думаете?

BY Data Nature 🕊






Share with your friend now:
group-telegram.com/datanature/354

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups.
from br


Telegram Data Nature 🕊
FROM American