Telegram Group & Telegram Channel
DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/26
Create:
Last Update:

DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/26

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Telegram Messenger Blocks Navalny Bot During Russian Election "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from br


Telegram Kitty Bytes AI
FROM American