Telegram Group & Telegram Channel
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/143
Create:
Last Update:

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/143

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. READ MORE
from br


Telegram Knowledge Accumulator
FROM American