Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1693
Create:
Last Update:

✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1693

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from br


Telegram Machine learning Interview
FROM American