Telegram Group & Telegram Channel
Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?



group-telegram.com/metaprogramming/406
Create:
Last Update:

Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/406

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from br


Telegram Metaprogramming
FROM American