Telegram Group & Telegram Channel
What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.



group-telegram.com/neural_cell/277
Create:
Last Update:

What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/277

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from br


Telegram the last neural cell
FROM American