Telegram Group & Telegram Channel
به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.group-telegram.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff



group-telegram.com/nlp_stuff/361
Create:
Last Update:

به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.group-telegram.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff

BY NLP stuff




Share with your friend now:
group-telegram.com/nlp_stuff/361

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from br


Telegram NLP stuff
FROM American