Telegram Group & Telegram Channel
Рубрика "мои кенты - мое богатство". 👬

Я обещал написать про быстрый инференс, и вот подвернулся случай. У меня есть два предпочтения, которым я предпочитаю следовать в дизайне инференс-сервисов:
- никаких динамических графов, все должно быть сконвертировано в ONNX, даже легкие scikit-learn модели, и потом гоняться в ONNXRuntime. Это и минимизирует ошибки с одной стороны, и позволяет дешево сменить core model, да и запускать можно одинаково хоть локально, хоть на сервере, только бэкенд подмени;
- если можно что-то вынести на serverless (например, в AWS Lambda), надо выносить - это простой способ сглаживать нагрузку.

У лямбд есть несколько проблем:
- неидеальное масштабирование (с нуля до многих тысяч параллельных запусков мгновенно не вырастешь, что бы там ни говорили маркетинговые описания);
- медленный cold start (в эту сторону есть подвижки);
- нет GPU, и потому инференс жирных моделей скорее затруднителен, да и экономически не очень выгоден.

Так вот, мои старые кореша Андрей и Игорь решили починить одну из этих проблем и пилят платформу everinfer.ai, которая прям соответствует моим представлениям о прекрасном:

from everinfer import Client

client = Client('my_secret_key')
pipeline = client.register_pipeline('my_model_name', ['onnx/model.onnx'])
runner = client.create_engine(pipeline['uuid'])
preds = runner.predict([inputs])

Внутри ONNXRuntime, Rust 🦀, ScyllaDB и прочие модные технологии, благодаря чему инференс получается довольно быстрым. Слегка потестировал, получилось чуть быстрее локального запуска ONNXRuntime на CPU, даже с учетом сетевых издержек.

Платформа только-только открывается для внешних пользователей и предлагает первым тестерам бесплатное железо для инференса и помощь в запуске (хотя API простой как табуретка, вряд ли понадобится много помощи). Можете писать сразу @andrey_kiselev и просить доступ.



group-telegram.com/partially_unsupervised/178
Create:
Last Update:

Рубрика "мои кенты - мое богатство". 👬

Я обещал написать про быстрый инференс, и вот подвернулся случай. У меня есть два предпочтения, которым я предпочитаю следовать в дизайне инференс-сервисов:
- никаких динамических графов, все должно быть сконвертировано в ONNX, даже легкие scikit-learn модели, и потом гоняться в ONNXRuntime. Это и минимизирует ошибки с одной стороны, и позволяет дешево сменить core model, да и запускать можно одинаково хоть локально, хоть на сервере, только бэкенд подмени;
- если можно что-то вынести на serverless (например, в AWS Lambda), надо выносить - это простой способ сглаживать нагрузку.

У лямбд есть несколько проблем:
- неидеальное масштабирование (с нуля до многих тысяч параллельных запусков мгновенно не вырастешь, что бы там ни говорили маркетинговые описания);
- медленный cold start (в эту сторону есть подвижки);
- нет GPU, и потому инференс жирных моделей скорее затруднителен, да и экономически не очень выгоден.

Так вот, мои старые кореша Андрей и Игорь решили починить одну из этих проблем и пилят платформу everinfer.ai, которая прям соответствует моим представлениям о прекрасном:

from everinfer import Client

client = Client('my_secret_key')
pipeline = client.register_pipeline('my_model_name', ['onnx/model.onnx'])
runner = client.create_engine(pipeline['uuid'])
preds = runner.predict([inputs])

Внутри ONNXRuntime, Rust 🦀, ScyllaDB и прочие модные технологии, благодаря чему инференс получается довольно быстрым. Слегка потестировал, получилось чуть быстрее локального запуска ONNXRuntime на CPU, даже с учетом сетевых издержек.

Платформа только-только открывается для внешних пользователей и предлагает первым тестерам бесплатное железо для инференса и помощь в запуске (хотя API простой как табуретка, вряд ли понадобится много помощи). Можете писать сразу @andrey_kiselev и просить доступ.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/178

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from br


Telegram partially unsupervised
FROM American