Telegram Group & Telegram Channel
#статистика_для_котиков

Она говорила, что любит нормальных, но выбирала с эксцессом и асимметрией

Привет, коллега!

Пока я готовлю очередной длиннопост про призму (для вновьприбывших первая и вторая части), решила кратенько рассказать о таких параметрах как асимметрия (skewness) и эксцесс (kurtosis), отражающих форму распределения данных.

Итак, коэффициент асимметрии - это мера асимметрии распределения вероятностей случайной величины относительно её среднего значения. Если он равен нулю, то распределение симметрично относительно центра (например, нормальное распределение или распределение Стьюдента).

Однако, очень часто распределение ассиметрично, например, если посмотреть на распределение зарплат, то можно увидеть, что труд большей части людей не слишком высоко ценится, а вот высокие доходы имеет лишь небольшая часть населения. Собственно вот такой длинный хвост справа будет выражаться в положительном коэффициенте асимметрии и чем больше значение - тем больше перекос.

Отрицательный коэффициент асимметрии будет при длинном хвосте слева и большей вероятности получить высокие значения случайной величины. Например, на одном из моих предметах большинство студентов набирает 70-90 баллов из 100 за эссе, потому что они очень умные, умеют искать литературу и правильно оформлять работу. Но бывает попадаются редкие работы, бездумно сгенерированные нейросетками и вот они создают длинный левый хвост у распределения оценок.

🤔 Странные, конечно, примеры получились, на грустное распределение зарплат коэффициент асимметрии положительный, а на умненьких студентов - отрицательный

Теперь про второй параметр, коэффициент эксцесса. Он отражает насколько "острая" вершина у распределения. UPD: есть поправочка из комментариев. Вообще есть приколы с его расчётом и одна из формул была предложена Пирсоном. По ней у нормального распределения эксцесс равен 3. Но чаще используют избыточный эксцесс (excess kurtosis), получаемый вычитанием тройки, причём называют его также просто коэффициентом эксцесса (например, в призме это так).

Распределение близкое к нормальному имеет избыточный эксцесс равный 0 и называется мезокуртическим распределением. Если коэффициент отрицательный, то распределение имеет более распластанную форму и называется платикуртическим. Для биологических данных небольшие выборки из неоднородной генеральной совокупности чаще всего будут иметь именно такое распределение, поскольку изначально разброс большой, а измерений для высокого пика нормального распределения может просто не хватать. Попробуй измерить рост у 5 своих друзей и посчитать коэффициент эксцесса.

Избыточный эксцесс больше 0 характерен для лептокуртического распределения. В этом случае распределение имеет высокий и острый пик, но в отличие от распределения с малым стандартными отклонением, в нём присутствуют значения сильно отклоняющиеся от среднего. Возвращаясь к умным студентам с высокими баллами за эссе: из-за читеров с нейросетями распределение получается не нормальным с малым разбросом, а лептокуртическим. Кстати, картинку распределением оценок прошлого года и рассчитанными коэффициентами ассиметрии и эксцесса скину в комментарии.

Пока читала литературу для этого поста неоднократно наталкивалась на информацию о том, что лептокуртическое распределение доходности рынка означает высокие риски при инвестировании, а вот платикурическое распределение более безопасно. Пока что моя единственная инвестиция - это запасы жирочка на случай голода, но может кому-то эта информация будет полезной.

И в заключении хочу признаться: я написала весь этот текст только чтобы запостить картинку с котиками, которая поднимает мне настроение каждый раз, когда я её встречаю. Надеюсь, теперь и тебе тоже 🙂
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/855
Create:
Last Update:

#статистика_для_котиков

Она говорила, что любит нормальных, но выбирала с эксцессом и асимметрией

Привет, коллега!

Пока я готовлю очередной длиннопост про призму (для вновьприбывших первая и вторая части), решила кратенько рассказать о таких параметрах как асимметрия (skewness) и эксцесс (kurtosis), отражающих форму распределения данных.

Итак, коэффициент асимметрии - это мера асимметрии распределения вероятностей случайной величины относительно её среднего значения. Если он равен нулю, то распределение симметрично относительно центра (например, нормальное распределение или распределение Стьюдента).

Однако, очень часто распределение ассиметрично, например, если посмотреть на распределение зарплат, то можно увидеть, что труд большей части людей не слишком высоко ценится, а вот высокие доходы имеет лишь небольшая часть населения. Собственно вот такой длинный хвост справа будет выражаться в положительном коэффициенте асимметрии и чем больше значение - тем больше перекос.

Отрицательный коэффициент асимметрии будет при длинном хвосте слева и большей вероятности получить высокие значения случайной величины. Например, на одном из моих предметах большинство студентов набирает 70-90 баллов из 100 за эссе, потому что они очень умные, умеют искать литературу и правильно оформлять работу. Но бывает попадаются редкие работы, бездумно сгенерированные нейросетками и вот они создают длинный левый хвост у распределения оценок.

🤔 Странные, конечно, примеры получились, на грустное распределение зарплат коэффициент асимметрии положительный, а на умненьких студентов - отрицательный

Теперь про второй параметр, коэффициент эксцесса. Он отражает насколько "острая" вершина у распределения. UPD: есть поправочка из комментариев. Вообще есть приколы с его расчётом и одна из формул была предложена Пирсоном. По ней у нормального распределения эксцесс равен 3. Но чаще используют избыточный эксцесс (excess kurtosis), получаемый вычитанием тройки, причём называют его также просто коэффициентом эксцесса (например, в призме это так).

Распределение близкое к нормальному имеет избыточный эксцесс равный 0 и называется мезокуртическим распределением. Если коэффициент отрицательный, то распределение имеет более распластанную форму и называется платикуртическим. Для биологических данных небольшие выборки из неоднородной генеральной совокупности чаще всего будут иметь именно такое распределение, поскольку изначально разброс большой, а измерений для высокого пика нормального распределения может просто не хватать. Попробуй измерить рост у 5 своих друзей и посчитать коэффициент эксцесса.

Избыточный эксцесс больше 0 характерен для лептокуртического распределения. В этом случае распределение имеет высокий и острый пик, но в отличие от распределения с малым стандартными отклонением, в нём присутствуют значения сильно отклоняющиеся от среднего. Возвращаясь к умным студентам с высокими баллами за эссе: из-за читеров с нейросетями распределение получается не нормальным с малым разбросом, а лептокуртическим. Кстати, картинку распределением оценок прошлого года и рассчитанными коэффициентами ассиметрии и эксцесса скину в комментарии.

Пока читала литературу для этого поста неоднократно наталкивалась на информацию о том, что лептокуртическое распределение доходности рынка означает высокие риски при инвестировании, а вот платикурическое распределение более безопасно. Пока что моя единственная инвестиция - это запасы жирочка на случай голода, но может кому-то эта информация будет полезной.

И в заключении хочу признаться: я написала весь этот текст только чтобы запостить картинку с котиками, которая поднимает мне настроение каждый раз, когда я её встречаю. Надеюсь, теперь и тебе тоже 🙂

BY АДовый рисёрч





Share with your friend now:
group-telegram.com/ad_research/855

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from ca


Telegram АДовый рисёрч
FROM American