Telegram Group & Telegram Channel
HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/117
Create:
Last Update:

HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/117

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from ca


Telegram Knowledge Accumulator
FROM American