Telegram Group & Telegram Channel
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/143
Create:
Last Update:

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/143

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from ca


Telegram Knowledge Accumulator
FROM American