Telegram Group & Telegram Channel
📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/lightautoml/182
Create:
Last Update:

📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор

BY LightAutoML framework




Share with your friend now:
group-telegram.com/lightautoml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from ca


Telegram LightAutoML framework
FROM American