Telegram Group & Telegram Channel
📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_books/1010
Create:
Last Update:

📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface

BY Машиннное обучение | Наука о данных Библиотека




Share with your friend now:
group-telegram.com/machinelearning_books/1010

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Anastasia Vlasova/Getty Images For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform.
from ca


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American