Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1855
Create:
Last Update:

🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT

BY Machine learning Interview







Share with your friend now:
group-telegram.com/machinelearning_interview/1855

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram.
from ca


Telegram Machine learning Interview
FROM American