Animals and humans understand the physical world, have common sense, possess a persistent memory, can reason, and can plan complex sequences of subgoals and actions. These essential characteristics of intelligent behavior are still beyond the capabilities of today's most powerful AI architectures, such as Auto-Regressive LLMs.
I will present a cognitive architecture that may constitute a path towards human-level AI. The centerpiece of the architecture is a predictive world model that allows the system to predict the consequences of its actions. and to plan sequences of actions that that fulfill a set of objectives. The objectives may include guardrails that guarantee the system's controllability and safety. The world model employs a Joint Embedding Predictive Architecture (JEPA) trained with self-supervised learning, largely by observation.
The JEPA simultaneously learns an encoder, that extracts maximally-informative representations of the percepts, and a predictor that predicts the representation of the next percept from the representation of the current percept and an optional action variable.
We show that JEPAs trained on images and videos produce good representations for image and video understanding. We show that they can detect unphysical events in videos. Finally, we show that planning can be performed by searching for action sequences that produce predicted end state that match a given target state.
Animals and humans understand the physical world, have common sense, possess a persistent memory, can reason, and can plan complex sequences of subgoals and actions. These essential characteristics of intelligent behavior are still beyond the capabilities of today's most powerful AI architectures, such as Auto-Regressive LLMs.
I will present a cognitive architecture that may constitute a path towards human-level AI. The centerpiece of the architecture is a predictive world model that allows the system to predict the consequences of its actions. and to plan sequences of actions that that fulfill a set of objectives. The objectives may include guardrails that guarantee the system's controllability and safety. The world model employs a Joint Embedding Predictive Architecture (JEPA) trained with self-supervised learning, largely by observation.
The JEPA simultaneously learns an encoder, that extracts maximally-informative representations of the percepts, and a predictor that predicts the representation of the next percept from the representation of the current percept and an optional action variable.
We show that JEPAs trained on images and videos produce good representations for image and video understanding. We show that they can detect unphysical events in videos. Finally, we show that planning can be performed by searching for action sequences that produce predicted end state that match a given target state.
"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from ca