Telegram Group & Telegram Channel
Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.



group-telegram.com/partially_unsupervised/203
Create:
Last Update:

Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/203

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee.
from ca


Telegram partially unsupervised
FROM American