Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.
Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.
С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.
На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.
Про архитектуру самой модели и процесс обучения информации почти нет.
Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.
Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.
С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.
На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.
Про архитектуру самой модели и процесс обучения информации почти нет.
I want a secure messaging app, should I use Telegram? On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world.
from ca