Telegram Group & Telegram Channel
DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/26
Create:
Last Update:

DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/26

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from cn


Telegram Kitty Bytes AI
FROM American