Telegram Group & Telegram Channel
Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder



group-telegram.com/law_coder/195
Create:
Last Update:

Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder

BY LawCoder


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/law_coder/195

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world."
from cn


Telegram LawCoder
FROM American