Telegram Group & Telegram Channel
Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.



group-telegram.com/llmsecurity/359
Create:
Last Update:

Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.

BY llm security и каланы




Share with your friend now:
group-telegram.com/llmsecurity/359

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from cn


Telegram llm security и каланы
FROM American