Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/--): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
Machine learning Interview | Telegram Webview: machinelearning_interview/1728 -
Telegram Group & Telegram Channel
🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview
🔥17👍136



group-telegram.com/machinelearning_interview/1728
Create:
Last Update:

🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview

BY Machine learning Interview

❌Photos not found?❌Click here to update cache.


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1728

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion.
from cn


Telegram Machine learning Interview
FROM American