group-telegram.com/cxx95/113
Last Update:
#books
Обзор книги "Practical Binary Analysis" (2019 г.) 📚
(можно скачать PDF тут)
На фотографии внештатный корреспондент паблика "C++95" Билли, прочитавший данную книгу.
Его отзыв: "Oh yeah, это точно стоит three hundred bucks! ASM WE CAN!"
Я давно ничего не писал из-за занятости, но сейчас смог
Эта книга посвящена разнообразному анализу бинарников, то есть исполняемых программ без соответствующего исходного кода. В ней очень много информации, больше чем в любой другой книге из #books - ее реально читать неделями.
Там есть знания, которые могут пригодиться разве что reverse engineers и vulnerable researchers, но и другим тоже может быть интересно
В
Во
В
В крутой
В
Там народу являют жестокую правду - в общем случае нет какого-то единого алгоритма дизассемблирования.
Более тупые дизассемблеры (как objdump) имеют линейный алгоритм - тупо расшифровывают ассемблерные команды от начала до конца.
Так как компиляторы могут встраивать вспомогательные данные прямо в код (особенно Visual Studio), то можно например напороться на jump table. По факту это список адресов, но дизассемблер об этом не знает и нарасшифрует в этом месте ассемблерные команды
Ничего не упадет, потому что в x86 "плотный" набор команд и практически любая последовательность байтов представляет собой валидный ассемблер
Более умные дизассемблеры (как IDA Pro) имеют рекурсивный алгоритм - они расшифровывают как бы настоящий код и только те места, куда управление доказанно может перейти, например через jmp. Там свои сложности с неявным control flow, когда в коде есть jump table или vtable, которые неявно указывают куда передавать управление, но это решаемо.
Дизассемблеры восстанавливают функции довольно условно (в ассемблере "функции" это вообще слишком большая абстракция) - оптимизирующий компилятор может так навертеть, что код принадлежащий функции может оказаться размазанным по всему бинарнику, и разные "функции" могут переиспользовать какой-то один кусок ассемблера
Чтобы определить, где находится условная "функция", дизасм ищет "сигнатуры", то есть паттерны ассемблерных инструкций, которые часто используются в начале/конце функции.
Пример сигнатуры в неоптимизированном x86 это "пролог" push ebp; mov ebp,esp
и "эпилог" leave; ret
Есть и более сложные кейсы, когда делается "tail call", а оптимизированные функции могут не иметь пролога и/или эпилога, поэтому ошибок может быть от 20% и больше.
Очень сложно восстанавливать структуры данных (C/C++), дизасмы часто не пытаются этого делать
Для более простого анализа часто используется промежуточное представление (IR, Intermediate Representation) ассемблера - например, вместо исходника где могут быть сотни разновидностей инструкций x86/ARM, можно получить IR где единицы разновидностей. IR бывает несколько, например REIL.
Дизасм восстанавливает код, который делает примерно то же, что ассемблер. Обычно выглядит он все равно довольно ужасно, но дизасмы стараются
ПРОДОЛЖЕНИЕ В КОММЕНТАРИИ