group-telegram.com/daokedao/37377
Last Update:
Вообще, конечно, история с реакцией рынков на новости о DeepSeek V3 и R1 это пример глупости помноженной на дилетантизм и истеричную природу массового сознания в эпоху кликбейт-экономики
Коротко по тезисам:
1. Нет, DeepSeek не «умнее на голову» всех в моделей. В разных бенчмарках результаты разные, но в среднем GPT-4o и Gemini-2 лучше. Можете посмотреть на ChatBot Arena, например (https://www.reddit.com/r/LocalLLaMA/comments/1i8u9jk/deepseekr1_appears_on_lmsys_arena_leaderboard/). Даже в результатах, опубликованных в статье авторов DeepSeek (https://github.com/deepseek-ai/DeepSeek-V3/blob/main/figures/benchmark.png) можно заметить, что в ряде тестов модель уступает, например, GPT-4o от мая 2024 года, то есть модели, которая в ChatBot Arena сейчас на 16-м месте.
2. Нет, на обучение DeepSeek не ушло 6 млн долларов «в 100 раз меньше, чем на GPT-4». В 6 млн долларов обошёлся финальный запуск обучения опубликованной модели. Тут не учитывались никакие предыдущие эксперименты, ни предыдущие версии модели, ни время людей. Чистый вычислительный бюджет на финальный запуск обучения. Эта сумма +/- такая же, как у моделей того же класса
3. Непонятно, за что пострадала Nvidia :)) Ну так-то, конечно, так им и надо, пускай снижают цены на железо, но учился-то DeepSeek на железках того самого Nvidia. И нет, теперь их не нужно меньше. И вычислительный бюджет на обучение там +/- обычный и на инференс такой большой модели (а это, напомню MoE с 671 млрд параметров, где при генерации токена используется 37 млрд параметров, то есть цена инференса там примерно как у 70B dense-модели) нужно много железа. И, естественно, успех DeepSeek отмасштабируют, вкинув ещё больше железа и сделав модель больше
4. Значит ли это, что модель плохая? Нет, модель очень хорошая. Мы с самого начала следим за коллегами из DeepSeek и с удовольствием использовали некоторые из их идей. Вообще, я бы сказал, что у нас в команде DeepSeek всегда рассматривалась как фаворит среди китайских моделей. DeepSeek лучше подавляющего большинства open-source-моделей, и это очень круто. Искренне рады за китайских коллег и за прогресс в области LLM-строения и машинного обучения в целом
5. В некоторых источниках пишут, что DeepSeek якобы полностью решил проблему «галлюцинаций». Nyet
Я думаю, что паника и шумиха случилась из-за того, что на западе обычно плохо знают про состояние дел в китайском ML, среди многих американских и европейских специалистов наблюдалось немного пренебрежительное и снисходительное отношение к Китаю в области ИИ. Дескать: ну что они там могут сделать, клепают свои низкокачественные плохо воспроизводимые работы, куда им с белым человеком тягаться? Всё это умножилось на антикитайскую риторику властей США, а при Трампе фокус на Китае как на главном противнике усилился. Помните истерическую статью Ашенбреннера? Теперь вот Гари Маркус вопит, требует наказать Цукерберга за Llama, дескать из-за опен-сорса китайцы украли все секреты. Это, конечно, типичный пример того, как валят с больной головы на здоровую. Виноваты в недостаточном прогрессе открытых моделей в США скорее люди типа Маркуса, со своей истерикой про опасности ИИ, запретительными и просто глупыми регуляторными инициативами и пр. «Знает кошка, чьё мясо съела»
Ну а в целом акции отрастут, ресурсы выделят, идеи получат широкое распространение, модели будут становиться лучше, прогресс не остановить (надеюсь)
Пусть расцветают сто цветов, пусть соперничают сто школ © Мао Цзэдун
BY Китайская угроза

Share with your friend now:
group-telegram.com/daokedao/37377