Telegram Group & Telegram Channel
🐼 Pandas-задача с подвохом: “Почему ничего не работает?”

📘 Условие

Дано: DataFrame df:


import pandas as pd
import numpy as np

df = pd.DataFrame({
'user_id': [1, 1, 2, 2, 3, 3],
'score': [100, 90, np.nan, 85, 75, 95]
})


Ты хочешь:

1) Для каждого пользователя найти средний score,
2) Заполнить пропущенные значения score средним по этому пользователю.

Ты пишешь код:


df['score_filled'] = df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))


Ожидаешь, что пропущенное значение будет заменено на `85.0`.
Но вместо этого… возникает ошибка или неверный результат.

Вопрос:

1) Почему этот код не работает как ты ожидаешь?
2) Какое поведение apply() вызывает подвох?
3) Как правильно решить задачу?

---

Разбор:

💥 Проблема в `.apply()` + присваивание по индексу

Функция `groupby().apply()` возвращает **объединённый результат с вложенным индексом**, который **не совпадает с индексом исходного DataFrame**.

Пример:

```python
df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))
```

→ возвращает Series с уровнем индекса: `(user_id, original_index)`,
а `df['score_filled'] = ...` ожидает индекс, совпадающий с `df.index`.

📌 Результат: pandas либо выбрасывает `ValueError`, либо вставляет неправильные значения.

Правильные способы

Способ 1: использовать `transform` (индекс сохраняется!):

```python
df['score_filled'] = df['score'].fillna(
df.groupby('user_id')['score'].transform('mean')
)
```

Способ 2: в два шага:

```python
user_means = df.groupby('user_id')['score'].transform('mean')
df['score_filled'] = df['score']
df.loc[df['score'].isna(), 'score_filled'] = user_means
```

🎯 Так `NaN` будет корректно заполнен значением `85.0`.

⚠️ Подвох

• `groupby().apply()` не гарантирует совпадение индексов
• `transform()` — безопаснее, если хочешь сохранить структуру
• Даже опытные часто используют `apply` “по привычке” и попадают в ловушку
• Такие ошибки не всегда приводят к crash — они хуже: создают **тихие баги**



Хочешь сделать вторую часть , ставь 👍



group-telegram.com/data_analysis_ml/3555
Create:
Last Update:

🐼 Pandas-задача с подвохом: “Почему ничего не работает?”

📘 Условие

Дано: DataFrame df:


import pandas as pd
import numpy as np

df = pd.DataFrame({
'user_id': [1, 1, 2, 2, 3, 3],
'score': [100, 90, np.nan, 85, 75, 95]
})


Ты хочешь:

1) Для каждого пользователя найти средний score,
2) Заполнить пропущенные значения score средним по этому пользователю.

Ты пишешь код:


df['score_filled'] = df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))


Ожидаешь, что пропущенное значение будет заменено на `85.0`.
Но вместо этого… возникает ошибка или неверный результат.

Вопрос:

1) Почему этот код не работает как ты ожидаешь?
2) Какое поведение apply() вызывает подвох?
3) Как правильно решить задачу?

---

Разбор:

💥 Проблема в `.apply()` + присваивание по индексу

Функция `groupby().apply()` возвращает **объединённый результат с вложенным индексом**, который **не совпадает с индексом исходного DataFrame**.

Пример:

```python
df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))
```

→ возвращает Series с уровнем индекса: `(user_id, original_index)`,
а `df['score_filled'] = ...` ожидает индекс, совпадающий с `df.index`.

📌 Результат: pandas либо выбрасывает `ValueError`, либо вставляет неправильные значения.

Правильные способы

Способ 1: использовать `transform` (индекс сохраняется!):

```python
df['score_filled'] = df['score'].fillna(
df.groupby('user_id')['score'].transform('mean')
)
```

Способ 2: в два шага:

```python
user_means = df.groupby('user_id')['score'].transform('mean')
df['score_filled'] = df['score']
df.loc[df['score'].isna(), 'score_filled'] = user_means
```

🎯 Так `NaN` будет корректно заполнен значением `85.0`.

⚠️ Подвох

• `groupby().apply()` не гарантирует совпадение индексов
• `transform()` — безопаснее, если хочешь сохранить структуру
• Даже опытные часто используют `apply` “по привычке” и попадают в ловушку
• Такие ошибки не всегда приводят к crash — они хуже: создают **тихие баги**



Хочешь сделать вторую часть , ставь 👍

BY Анализ данных (Data analysis)


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_analysis_ml/3555

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Anastasia Vlasova/Getty Images Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can."
from us


Telegram Анализ данных (Data analysis)
FROM American