Telegram Group Search
🚀 LTX-Video 13B — один из самых мощных open-source видеогенераторов.

Разработчики внедрили в модель мультимасштабный рендеринг.

Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.

📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:

один поток отвечает за фон (низкая детализация, большой масштаб),

другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).

Потом всё объединяется в один кадр, как слои в Photoshop.

🎯 Зачем это нужно?

Фон остаётся стабильным, не "дергается"

Движущиеся объекты остаются чёткими и отдельными от фона

Картинка в целом не разваливается (нет смешивания движений, артефактов)

Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.

👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.

Что нового?

Модель 13 миллиардов параметров
Multiscale rendering → больше деталей, чётче текстуры
Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций

Запускается даже на RTX 4090.

#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration

Попробовать можно тутhttps://app.ltx.studio/ltx-video
Codehttps://github.com/Lightricks/LTX-Video
Weightshttps://huggingface.co/Lightricks/LTX-Video
Учитесь в универе и хотите вырваться из рутины? Подайте заявку на бесплатный студкемп Яндекс Образования и НГУ! Здесь вы не просто переключитесь с повседневных задач, а нырнёте в одно из самых перспективных IT-направлений — NLP.

За две недели — с 14 по 26 июля — вы разберётесь, как работают языковые модели вроде YandexGPT и Qwen, поймёте, что такое мультимодальность и RAG, поработаете с реальными данными и создадите собственный проект. На интенсиве ждут студентов со всей России и каждому, кто пройдёт отбор, оплатят проезд и проживание. Успейте подать заявку до 18 мая!
Forwarded from Machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📄 DocsGPT — открытый RAG-ассистент для работы с документами. Это не просто чат-бот, а целая экосистема, которая умеет извлекать информацию из PDF, DOCX, веб-страниц и даже GitHub-репозиториев, сохраняя привязку к исходным данным.

Что выделяет проект:
▪️Поддержка локальных моделей (Ollama, llama.cpp) и облачных API (OpenAI, Anthropic)
▪️Готовые интеграции для Discord, Telegram и веб-сайтов
▪️Возможность расширения функционала через инструменты и вебхуки

Для старта достаточно клонировать репозиторий и запустить setup-скрипт — через пару минут вы получите работающий инстанс с интерфейсом на localhost.

🤖 GitHub

@data_analysis_ml
Media is too big
VIEW IN TELEGRAM
🔥 AgenticSeek — мощнейший опенсорс ИИ-агент.

Это лучшая бесплатная альтернатива Manus AI за 200$. Есть всё, что нужно — поиск по интернету, поддержка голосового управления + он хороший помощник по кодингу.

И он умеет почти всё:

• Спланирует тур за границу: подберёт билеты, отели, маршруты
• Проведёт аудит бизнеса и предложит варианты оптимизации
• Возьмёт на себя работу в таблицах, анализ данных и отчётов
• Напишет код под любую задачу
• Прочитает книги, статьи, репозитории, просёрфит сайты и соберёт данные
• А теперь представьте: вы даёте ему сотню таких задач одновременно — это уже не ассистент, а полноценный бизнес-комбайн

AgenticSeek полностью управляет браузером и приложениями, интегрируется в ваши процессы и автоматически подбирает агентов под задачи.

Управлять можно голосом
Все приватные данные остаются только у вас


На GitHub уже 1800 звезд.

https://github.com/Fosowl/agenticSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Hugging Face представили бесплатного Open Computer Agent — открытый аналог Operator, запускающийся на виртуальной Linux-машине. Этот агент умеет искать и бронировать билеты, заказывать столик в ресторане и решать множество других задач.

Есть два «но»: он иногда не справляется с CAPTCHA, а из-за высокой нагрузки ответы могут идти чуть дольше. Зато всё бесплатно и с открытым исходным кодом!

Попробовать можно прямо сейчас:

https://huggingface.co/spaces/smolagents/computer-agent

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
NVIDIA открыла исходный код моделей Open Code Reasoning - 32B, 14B и 7B - лицензировано APACHE 2.0 🔥

> Превосходит O3 mini и O1 (низкий) на LiveCodeBench 😍

Модели в среднем на 30% эффективнее других эквивалентных моделей Reasoning.

Работает с llama.cpp, vLLM, transformers, TGI и другими — проверьте их сегодня!!


🟢Models
🟢Dataset
🟢Paper
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Проект: fast-agent

fast-agent — это современный фреймворк для быстрой разработки и тестирования интеллектуальных агентов и рабочих процессов, поддерживающих протокол MCP (Model-Context-Protocol). Он предоставляет простой декларативный синтаксис и мощные инструменты для построения многоагентных систем с поддержкой OpenAI, Anthropic и других моделей.

Основные возможности

• Быстрое создание агентов с помощью декораторов @fast.agent, минимизируя количество кода.

• Поддержка рабочих процессов: цепочки (`chain`), параллельные вызовы (`parallel`), маршрутизаторы (`router`), оркестраторы (`orchestrator`), схемы с оценкой и оптимизацией (`evaluator_optimizer`).

• Мультимодальность: обработка изображений, PDF-файлов и интеграция с внешними ресурсами MCP.

• Интерактивная отладка: настройка и диагностика агентов до, во время и после выполнения рабочих процессов.

• Гибкая конфигурация через fastagent.config.yaml и fastagent.secrets.yaml.

• Интеграция с LLM: OpenAI (GPT-4 и др.), Anthropic (Haiku, Sonnet, Opus) и другие модели через MCP-серверы.

Быстрый старт

1️⃣ Установите менеджер пакетов uv для Python.

2️⃣ Установите fast-agent:


uv pip install fast-agent-mcp


3️⃣ Создайте пример агента и конфигурационные файлы:


uv run fast-agent setup


4️⃣ Запустите агента:


uv run agent.py


5️⃣ Для запуска примеров рабочих процессов:


uv run fast-agent quickstart workflow


Документация и примеры

• Официальный сайт: [fast-agent.ai](https://fast-agent.ai)

• Документация: [fast-agent-docs](https://github.com/evalstate/fast-agent-docs)

• Примеры: директория examples в репозитории.

Сообщество и развитие

• Проект активно развивается, 1.7k+ звёзд на GitHub.

• Обсуждения: [Discussions](https://github.com/evalstate/fast-agent/discussions)

• Последние релизы: [Releases](https://github.com/evalstate/fast-agent/releases)

Видеообзор

[First Look at Fast-Agent (or Manus) – Coding an AI ...](https://www.youtube.com/watch?v=GaVQyYougPc&utm_source=chatgpt.com)

🔍 GitHub
Please open Telegram to view this post
VIEW IN TELEGRAM
🌧️ Superlinked — фреймворк для гибридного поиска, где вектора и метаданные работают вместе. Этот инструмент решает главную боль RAG-систем и рекомендательных сервисов — как эффективно комбинировать эмбеддинги с структурированными данными.

В отличие от чистых векторных поисков, здесь можно создать единую модель, где описание товара и его оценка влияют на результаты совместно. Проект широкой интеграции: от тестов в Jupyter-ноутбуке до продакшн-развёртывания REST API одним командой.

🤖 GitHub

@data_analysis_ml
🐼 Pandas-задача с подвохом: “Почему ничего не работает?”

📘 Условие

Дано: DataFrame df:


import pandas as pd
import numpy as np

df = pd.DataFrame({
'user_id': [1, 1, 2, 2, 3, 3],
'score': [100, 90, np.nan, 85, 75, 95]
})


Ты хочешь:

1) Для каждого пользователя найти средний score,
2) Заполнить пропущенные значения score средним по этому пользователю.

Ты пишешь код:


df['score_filled'] = df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))


Ожидаешь, что пропущенное значение будет заменено на `85.0`.
Но вместо этого… возникает ошибка или неверный результат.

Вопрос:

1) Почему этот код не работает как ты ожидаешь?
2) Какое поведение apply() вызывает подвох?
3) Как правильно решить задачу?

---

Разбор:

💥 Проблема в `.apply()` + присваивание по индексу

Функция `groupby().apply()` возвращает **объединённый результат с вложенным индексом**, который **не совпадает с индексом исходного DataFrame**.

Пример:

```python
df.groupby('user_id')['score'].apply(lambda x: x.fillna(x.mean()))
```

→ возвращает Series с уровнем индекса: `(user_id, original_index)`,
а `df['score_filled'] = ...` ожидает индекс, совпадающий с `df.index`.

📌 Результат: pandas либо выбрасывает `ValueError`, либо вставляет неправильные значения.

Правильные способы

Способ 1: использовать `transform` (индекс сохраняется!):

```python
df['score_filled'] = df['score'].fillna(
df.groupby('user_id')['score'].transform('mean')
)
```

Способ 2: в два шага:

```python
user_means = df.groupby('user_id')['score'].transform('mean')
df['score_filled'] = df['score']
df.loc[df['score'].isna(), 'score_filled'] = user_means
```

🎯 Так `NaN` будет корректно заполнен значением `85.0`.

⚠️ Подвох

• `groupby().apply()` не гарантирует совпадение индексов
• `transform()` — безопаснее, если хочешь сохранить структуру
• Даже опытные часто используют `apply` “по привычке” и попадают в ловушку
• Такие ошибки не всегда приводят к crash — они хуже: создают **тихие баги**



Хочешь сделать вторую часть , ставь 👍
Forwarded from Machinelearning
✔️ Qwen официально выпустили квантованные версии Qwen3!

Теперь Qwen3 можно развернуть через Ollama, LM Studio, SGLang и vLLM — выбирайте удобный формат (GGUF, AWQ или GPTQ) для локального деплоя.

Все модели доступны в коллекции Qwen3 на Hugging Face и ModelScope:

➡️Hugging Face: https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f

➡️ ModelScope: https://modelscope.cn/collections/Qwen3-9743180bdc6b48

@ai_machinelearning_big_data

#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
🌐 Reader от Jina AI — переводчик веб-страниц для языковых моделей. Этот необычный проект решает проблему всех RAG-систем, превращая контент веб-страниц в удобоваримый для LLM формат. Просто добавьте https://r.jina.ai/ перед любой ссылкой и получите очищенный от рекламы, JS-кода и лишних элементов текст с автоматически подписанными изображениями.

Также запрос через s.jina.ai не просто выдает список ссылок, а сразу загружает и обрабатывает топ-5 результатов. Технология уже используется в продакшене и полностью бесплатна.

🤖 GitHub

@data_analysis_ml
🩺 HealthBench — новый бенчмарк от OpenAI для оценки ИИ в медицине

OpenAI представила HealthBench — масштабный бенчмарк, разработанный для оценки возможностей языковых моделей в медицинских сценариях. Он создан в сотрудничестве с 262 врачами из 60 стран и включает 5 000 реалистичных медицинских диалогов.

🔍 Основные особенности HealthBench:


- Реалистичные кейсы: Диалоги отражают реальные взаимодействия между пациентами и врачами, охватывая различные медицинские специальности и контексты.

- Многоязычность: Бенчмарк поддерживает несколько языков, что позволяет оценивать модели в глобальном масштабе.

- Оценка по рубрикам: Каждый ответ модели оценивается по набору критериев, разработанных врачами, с учетом полноты, точности и уместности.

Открытый доступ: Код и данные доступны на GitHub, что способствует прозрачности и сотрудничеству в исследовательском сообществе.

HealthBench устанавливает новый стандарт для оценки ИИ в здравоохранении, обеспечивая более надежные и безопасные инструменты для пациентов и врачей.

🔗 Подробнее: https://openai.com/index/healthbench/
This media is not supported in your browser
VIEW IN TELEGRAM
Сэм Альтман:
2025 — год ИИ-агентов
2026 — год научных исследований и прорывов
2027 — год, когда ИИ и робототехника действительно начнут взаимодействовать с физическим миром
Погнали!

@data_analysis_ml
🔍 Что такое AssetGen 2.0?

AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:

- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.

Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.


🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.

Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.

Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.

🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.

🔗 Подробнее

@data_analysis_ml
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ NVIDIA поставит в Саудовскую Аравию 18 000 топовых чипов для ИИ.

NVIDIA отправит более 18 000 флагманских Blackwell GB300 в саудовскую компанию-стартап Humain, заявил CEO Джeнсeн Хуанг на инвестиционном форуме в Эр-Рияде. Эти чипы, одни из самых мощных в мире, будут работать в дата-центрах суммарной мощностью 500 мегаватт, помогая строить ИИ-инфраструктуру страны.

Humain, принадлежащая местному суверенному фонду, позже задействует «сотни тысяч» GPU. AMD тоже участвует в проекте, и тоже поставит свои чипы для аналогичной инфраструктуры на $10 млрд.
cnbc.com

✔️ Audible внедряет ИИ для создания аудиокниг.

Audible объявил о внедрении полного цикла производства аудиокниг на основе ИИ — от перевода до озвучки. В ближайшие месяцы сервис предложит более 100 синтезированных голосов на английском, испанском, французском и итальянском языках с акцентами и диалектами.

Технология поддерживает два варианта перевода: текст-текст (с последующей озвучкой) и речь-речь, сохраняющую стиль оригинального чтеца. Для точности перевода доступна проверка профессиональными лингвистами. Первые тесты перевода стартуют этой осенью.
thebookseller.com

✔️ Tencent CodeBuddy: ИИ-ассистент для программистов.

Tencent запустил CodeBuddy, инструмент, который может стать конкурентом Cursor. Он поддерживает автодополнение кода, диагностику ошибок, рефакторинг, написание тестов и ревью, а также работает с экосистемой WeChat.

Особенность сервиса - режим Craft: ИИ понимает задачи на естественном языке и генерирует проекты из нескольких файлов. CodeBuddy поддерживает MCP-протокол, позволяя интегрировать сторонние инструменты без лишних телодвижений. В основе — модели DeepSeek V3 и HunYuan Turbo S, доступные бесплатно. Инструмент совместим с VSCode, Jetbrains и другими IDE.
copilot.tencent.com

✔️ Intel Arc B580 может получить уникальную версию с двумя GPU и 48 ГБ памяти.

Портал videocardz поделился слухами о том, что один из партнеров Intel разрабатывает двухчиповую версию видеокарты Arc B580 с суммарными 48 ГБ видеопамяти. По данным неназванного источника, устройство получит нестандартный дизайн, а его анонс запланирован на ближайшую неделю. Хотя точный бренд пока не называется, известно, что проект не является официальной разработкой Intel и находится под NDA.

При этом, обычная версия B580 с 24 ГБ задерживается на несколько месяцев и есть вероятность, что это связано с "мистической" 48 ГБ-версией. Если информация подтвердится, это станет редким случаем десктопного двухчипового решения в эпоху монопольных GPU. Ждем подробностей на Computex.
videocardz.com

✔️ Утечка системного промпта Claude взбудоражила ИИ-сообщество.

Системный промпт Claude, описывающий поведение модели и ее инструменты, слили в сеть — 16,7 тыс. слов и 24 тыс. токенов. Документ раскрывает детали от формата ответов до методов решения задач, например, как считать буквы в слове «strawberry». В сравнении с 2,2 тыс. словами у OpenAI он гигантский. Большая часть текста посвящена интеграции с MCP-сервером, поисковыми правилами и «горячими исправлениями» для данных после 2024 года.

Andrej Karpathy назвал утечку поводом обсудить новую парадигму обучения ИИ: вместо тонкой настройки весов модели он предложил редактировать промпты вручную, как человек использует заметки. Это должно помочь ИИ запоминать стратегии и адаптироваться к контексту. Однако критики возражают: автономные подсказки могут запутать модель, а без постоянного обучения эффект будет краткосрочным.
news.ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Anthropic проводит испытания безопасности новой модели под названием «Клод-Нептун».

Не удивлюсь, если мы скоро увидим Claude 4.

Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.

#Claude

@data_analysis_ml - подписаться
2025/06/12 17:39:15
Back to Top
HTML Embed Code: