Telegram Group & Telegram Channel
📊 Математическая задача для Data Scientists: "Идеальная точка разбиения"

**Условие**

У тебя есть список чисел List[float], представляющий одномерное распределение (например, значения метрики или зарплаты).
Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).

Формат:


def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
...


Пример:


data = [1.0, 2.0, 3.0, 4.0, 5.0]
# Разделение после 2 → [1.0, 2.0], [3.0, 4.0, 5.0]
# std слева ≈ 0.5, справа ≈ 0.816 → разница = 0.316 > 0.1 → не подходит


🔍 Подсказка
Используй statistics.stdev() или numpy.std(ddof=1) (с выборочной коррекцией).
Но не забывай, что длина подмассива должна быть как минимум 2.

---

Пример реализации:

```python
import statistics

def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части

for i in range(2, n - 1):
left = data[:i]
right = data[i:]

if len(left) < 2 or len(right) < 2:
continue

std_left = statistics.stdev(left)
std_right = statistics.stdev(right)

if abs(std_left - std_right) <= epsilon:
return True

return False
```

📌 Пример использования:

```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```

🎯 Что проверяет задача:

• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»



group-telegram.com/data_math/771
Create:
Last Update:

📊 Математическая задача для Data Scientists: "Идеальная точка разбиения"

**Условие**

У тебя есть список чисел List[float], представляющий одномерное распределение (например, значения метрики или зарплаты).
Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).

Формат:


def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
...


Пример:


data = [1.0, 2.0, 3.0, 4.0, 5.0]
# Разделение после 2 → [1.0, 2.0], [3.0, 4.0, 5.0]
# std слева ≈ 0.5, справа ≈ 0.816 → разница = 0.316 > 0.1 → не подходит


🔍 Подсказка
Используй statistics.stdev() или numpy.std(ddof=1) (с выборочной коррекцией).
Но не забывай, что длина подмассива должна быть как минимум 2.

---

Пример реализации:

```python
import statistics

def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части

for i in range(2, n - 1):
left = data[:i]
right = data[i:]

if len(left) < 2 or len(right) < 2:
continue

std_left = statistics.stdev(left)
std_right = statistics.stdev(right)

if abs(std_left - std_right) <= epsilon:
return True

return False
```

📌 Пример использования:

```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```

🎯 Что проверяет задача:

• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/771

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from us


Telegram Математика Дата саентиста
FROM American