Telegram Group & Telegram Channel
LLMs Can Get Brain Rot: статья о том, что модельки тоже деградируют от думскролинга

Исследователи из Техаса выпустили ну очень интересную работу, вызвавшую волну обсуждений. Они показали, что если LLM начать дообучать на низкокачественных данных из соцсетей (коротких, популярных, кликабельных постах), то она начинает терять свои когнитивные способности. Примерно так же, как человек теряет внимание и память, когда слишком много думсерфит.

Разбираемся, почему так, с технической точки зрения.

По факту, эксперимент был следующий. Взяли Llama 3 8B Instruct и начали дообучать на (а) коротких и очень популярных постах, у которых много лайков, ретвитов и реплаев; и (б) на контенте с низкой смысловой ценностью: кликбейт, конспирология, все такое. После этого замерили метрики и сравнили с результатами до дообучения. Итоги:

– Качество ризонинга упало с 74.9 до 57.2
– Понимание длинного контекста – с 84.4 до 52.3
– На элаймент-тестах выяснилось, что у модели развился нарциссизм, макиавеллизм и психопатия

Даже после дополнительного тюнинга на чистых данных деградация не исчезала полностью.

Но дело в том, что никакого глобального открытия тут нет. Объясняется все это простым сдвигом распределения. При дообучении на коротких, популярных, эмоционально окрашенных твитах модель видит совсем другой статистический ландшафт, чем во время исходного претрейна на книжках, статьях и тд.

Это смещает распределение в пространстве эмбеддингов и меняет attention-паттерны. Модель постоянно видит короткие тексты без логической цепочки, и, естественно, маски внимания начинают больше фокусироваться на последних нескольких токенах и терять долгосрочные зависимости, которые раньше и обеспечивали качественный CoT.

Градиентная динамика тут тоже играет против нас. Лосс просто-напросто минимизируется за счет поверхностных корреляций, а параметры, отвечающие за долгие причинно-следственные связи, почти не получают обновлений. Вот и получается, что моделька теряет способность длинно рассуждать. Авторы называют этот феномен thought-skipping.

Вот так. Просто еще одно доказательство, что данные – наше все. Теперь можно идти дальше листать рилсы ☕️

arxiv.org/pdf/2510.13928
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥141😁8544👍215🤔2🗿2111



group-telegram.com/data_secrets/8083
Create:
Last Update:

LLMs Can Get Brain Rot: статья о том, что модельки тоже деградируют от думскролинга

Исследователи из Техаса выпустили ну очень интересную работу, вызвавшую волну обсуждений. Они показали, что если LLM начать дообучать на низкокачественных данных из соцсетей (коротких, популярных, кликабельных постах), то она начинает терять свои когнитивные способности. Примерно так же, как человек теряет внимание и память, когда слишком много думсерфит.

Разбираемся, почему так, с технической точки зрения.

По факту, эксперимент был следующий. Взяли Llama 3 8B Instruct и начали дообучать на (а) коротких и очень популярных постах, у которых много лайков, ретвитов и реплаев; и (б) на контенте с низкой смысловой ценностью: кликбейт, конспирология, все такое. После этого замерили метрики и сравнили с результатами до дообучения. Итоги:

– Качество ризонинга упало с 74.9 до 57.2
– Понимание длинного контекста – с 84.4 до 52.3
– На элаймент-тестах выяснилось, что у модели развился нарциссизм, макиавеллизм и психопатия

Даже после дополнительного тюнинга на чистых данных деградация не исчезала полностью.

Но дело в том, что никакого глобального открытия тут нет. Объясняется все это простым сдвигом распределения. При дообучении на коротких, популярных, эмоционально окрашенных твитах модель видит совсем другой статистический ландшафт, чем во время исходного претрейна на книжках, статьях и тд.

Это смещает распределение в пространстве эмбеддингов и меняет attention-паттерны. Модель постоянно видит короткие тексты без логической цепочки, и, естественно, маски внимания начинают больше фокусироваться на последних нескольких токенах и терять долгосрочные зависимости, которые раньше и обеспечивали качественный CoT.

Градиентная динамика тут тоже играет против нас. Лосс просто-напросто минимизируется за счет поверхностных корреляций, а параметры, отвечающие за долгие причинно-следственные связи, почти не получают обновлений. Вот и получается, что моделька теряет способность длинно рассуждать. Авторы называют этот феномен thought-skipping.

Вот так. Просто еще одно доказательство, что данные – наше все. Теперь можно идти дальше листать рилсы ☕️

arxiv.org/pdf/2510.13928

BY Data Secrets






Share with your friend now:
group-telegram.com/data_secrets/8083

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

False news often spreads via public groups, or chats, with potentially fatal effects. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from us


Telegram Data Secrets
FROM American