Telegram Group & Telegram Channel
🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.



group-telegram.com/data_math/766
Create:
Last Update:

🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/766

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from de


Telegram Математика Дата саентиста
FROM American