Telegram Group & Telegram Channel
По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393
👍141🔥4221❤‍🔥4👌2🦄2😁1🎃1



group-telegram.com/data_secrets/6119
Create:
Last Update:

По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393

BY Data Secrets




Share with your friend now:
group-telegram.com/data_secrets/6119

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Anastasia Vlasova/Getty Images "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from de


Telegram Data Secrets
FROM American