Telegram Group & Telegram Channel
🚀 How to Become a Self-Taught AI Developer?

AI is transforming the world, and the best part? You don’t need a formal degree to break into the field! With the right roadmap and hands-on practice, anyone can become an AI developer. Here’s how you can do it:

1️⃣ Master the Fundamentals of Programming

Start with Python, as it’s the most popular language for AI. Learn data structures, algorithms, and object-oriented programming (OOP). Practice coding on LeetCode and HackerRank.

👉How to get started Python: https://www.youtube.com/watch?v=EGdhnSEWKok
How to Create & Use Python Virtual Environments | ML Project Setup + GitHub Actions CI/CD https://youtu.be/qYYYgS-ou7Q

👉Beginner's Guide to Python Programming. Getting started now: https://youtu.be/ISv6XIl1hn0

👉Data Structures with Projects full tutorial for beginners
https://www.youtube.com/watch?v=lbdKQI8Jsok

👉OOP in Python - beginners Crash Course https://www.youtube.com/watch?v=I7z6i1QTdsw

2️⃣ Build a Strong Math Foundation

AI relies on:
🔹 Linear Algebra – Matrices, vectors (used in deep learning) https://youtu.be/BNa2s6OtWls
🔹 Probability & Statistics – Bayesian reasoning, distributions https://youtube.com/playlist?list=PL0nX4ZoMtjYEl_1ONxAZHu65DPCQcsHmI&si=tAz0B3yoATAjE8Fx
🔹 Calculus – Derivatives, gradients (used in optimization)

📚 Learn from 3Blue1Brown, Khan Academy, or MIT OpenCourseWare.

3️⃣ Learn Machine Learning (ML)

Start with traditional ML before deep learning:
Supervised Learning – Linear regression, decision trees https://youtube.com/playlist?list=PL0nX4ZoMtjYGV8Ff_s2FtADIPfwlHst8B&si=buC-eP3AZkIjzI_N
Unsupervised Learning – Clustering, PCA
Reinforcement Learning – Q-learning, deep Q-networks

🔗 Best course? Andrew Ng’s ML Course on Coursera.

4️⃣ Dive into Deep Learning

Once comfortable with ML, explore:
Neural Networks (ANNs, CNNs, RNNs, Transformers)
TensorFlow & PyTorch (Industry-standard deep learning frameworks)
Computer Vision & NLP

Try Fast.ai or the Deep Learning Specialization by Andrew Ng.

5️⃣ Build Real-World Projects

The best way to learn AI? DO AI. 🚀
💡 Train models with Kaggle datasets
💡 Build a chatbot, image classifier, or recommendation system
💡 Contribute to open-source AI projects

6️⃣ Stay Updated & Join the AI Community

AI evolves fast! Stay ahead by:
🔹 Following Google AI, OpenAI, DeepMind
🔹 Engaging in Reddit r/MachineLearning, LinkedIn AI discussions
🔹 Attending AI conferences like NeurIPS & ICML

7️⃣ Create a Portfolio & Apply for AI Roles

📌 Publish projects on GitHub
📌 Share insights on Medium/Towards Data Science
📌 Network on LinkedIn & Kaggle

No CS degree? No problem! AI is about curiosity, consistency, and hands-on experience. Start now, keep learning, and let’s build the future with AI. 🚀

Tagging AI learners & enthusiasts: What’s your AI learning journey like? Let’s connect!. 🔥👇

#AI #MachineLearning #DeepLearning #Python #ArtificialIntelligence #SelfTaught
👍1



group-telegram.com/epythonlab/1959
Create:
Last Update:

🚀 How to Become a Self-Taught AI Developer?

AI is transforming the world, and the best part? You don’t need a formal degree to break into the field! With the right roadmap and hands-on practice, anyone can become an AI developer. Here’s how you can do it:

1️⃣ Master the Fundamentals of Programming

Start with Python, as it’s the most popular language for AI. Learn data structures, algorithms, and object-oriented programming (OOP). Practice coding on LeetCode and HackerRank.

👉How to get started Python: https://www.youtube.com/watch?v=EGdhnSEWKok
How to Create & Use Python Virtual Environments | ML Project Setup + GitHub Actions CI/CD https://youtu.be/qYYYgS-ou7Q

👉Beginner's Guide to Python Programming. Getting started now: https://youtu.be/ISv6XIl1hn0

👉Data Structures with Projects full tutorial for beginners
https://www.youtube.com/watch?v=lbdKQI8Jsok

👉OOP in Python - beginners Crash Course https://www.youtube.com/watch?v=I7z6i1QTdsw

2️⃣ Build a Strong Math Foundation

AI relies on:
🔹 Linear Algebra – Matrices, vectors (used in deep learning) https://youtu.be/BNa2s6OtWls
🔹 Probability & Statistics – Bayesian reasoning, distributions https://youtube.com/playlist?list=PL0nX4ZoMtjYEl_1ONxAZHu65DPCQcsHmI&si=tAz0B3yoATAjE8Fx
🔹 Calculus – Derivatives, gradients (used in optimization)

📚 Learn from 3Blue1Brown, Khan Academy, or MIT OpenCourseWare.

3️⃣ Learn Machine Learning (ML)

Start with traditional ML before deep learning:
Supervised Learning – Linear regression, decision trees https://youtube.com/playlist?list=PL0nX4ZoMtjYGV8Ff_s2FtADIPfwlHst8B&si=buC-eP3AZkIjzI_N
Unsupervised Learning – Clustering, PCA
Reinforcement Learning – Q-learning, deep Q-networks

🔗 Best course? Andrew Ng’s ML Course on Coursera.

4️⃣ Dive into Deep Learning

Once comfortable with ML, explore:
Neural Networks (ANNs, CNNs, RNNs, Transformers)
TensorFlow & PyTorch (Industry-standard deep learning frameworks)
Computer Vision & NLP

Try Fast.ai or the Deep Learning Specialization by Andrew Ng.

5️⃣ Build Real-World Projects

The best way to learn AI? DO AI. 🚀
💡 Train models with Kaggle datasets
💡 Build a chatbot, image classifier, or recommendation system
💡 Contribute to open-source AI projects

6️⃣ Stay Updated & Join the AI Community

AI evolves fast! Stay ahead by:
🔹 Following Google AI, OpenAI, DeepMind
🔹 Engaging in Reddit r/MachineLearning, LinkedIn AI discussions
🔹 Attending AI conferences like NeurIPS & ICML

7️⃣ Create a Portfolio & Apply for AI Roles

📌 Publish projects on GitHub
📌 Share insights on Medium/Towards Data Science
📌 Network on LinkedIn & Kaggle

No CS degree? No problem! AI is about curiosity, consistency, and hands-on experience. Start now, keep learning, and let’s build the future with AI. 🚀

Tagging AI learners & enthusiasts: What’s your AI learning journey like? Let’s connect!. 🔥👇

#AI #MachineLearning #DeepLearning #Python #ArtificialIntelligence #SelfTaught

BY Epython Lab




Share with your friend now:
group-telegram.com/epythonlab/1959

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from de


Telegram Epython Lab
FROM American