Telegram Group & Telegram Channel
Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/11
Create:
Last Update:

Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Despite Telegram's origins, its approach to users' security has privacy advocates worried. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements.
from de


Telegram Kitty Bytes AI
FROM American