Telegram Group & Telegram Channel
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.



group-telegram.com/llmsecurity/454
Create:
Last Update:

Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/454

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice.
from de


Telegram llm security и каланы
FROM American