Telegram Group & Telegram Channel
#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 23 апреля в 14:00.
В рамках этого семинара пройдет предзащита докторской диссертации Рыбакова М.Н.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идёте на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Михаил Николаевич Рыбаков (ВШМ МФТИ)

Название: Моделирование логических систем средствами их фрагментов (предзащита докторской диссертации)

Аннотация:
Проведённое исследование связано с выразительностью языков, логик и теорий, и прежде всего с алгоритмической выразительностью (в том числе вычислительной сложностью) определённых их фрагментов.

Многие естественные логические системы либо алгоритмически неразрешимы (причём иногда сильно неразрешимы), либо, будучи разрешимыми, имеют высокую сложность проблемы разрешения. Известно, что определённые ограничения, накладываемые на средства языка, аксиоматику или используемую семантику, приводят к изменению алгоритмической сложности тех или иных задач. В то же время иногда это не так: например, в неклассических логиках как неразрешимость, так и высокая сложность проблемы разрешения в случае разрешимости могут получаться при очень сильных ограничениях на средства языка.

Представляется актуальным не только нахождение границ, в рамках которых подобные проблемы оказываются алгоритмически простыми или наоборот остаются алгоритмически сложными, но и разработка общих методов, позволяющих получать оценки алгоритмической сложности фрагментов не только отдельных логических систем, а всех систем тех или иных бесконечных классов. Вместе с методами хотелось бы иметь общие признаки или критерии, позволяющие относительно просто делать вывод об алгоритмической сложности тех или иных фрагментов интересующей нас системы или хотя бы о потенциальной возможности или невозможности применения этих методов.

Основная цель работы состоит в том, чтобы развить общие методы моделирования алгоритмически сложных проблем внутри логик и теорий, используя минимальные средства языка. В частности, в работе предложены методы моделирования полных языков средствами их очень бедных фрагментов. К средствам языка, которые минимизируются, в первую очередь относятся следующие: число пропозициональных переменных в пропозициональных языках, число предметных переменных, а также число и валентность предикатных букв в языках первого порядка. Рассматриваются и некоторые ограничения на использование логических связок и кванторов.

В докладе будет дан обзор результатов, которые были получены автором в этом направлении. Будут коротко описаны методы их получения, а также возможные дальнейшие продвижения.

ВК



group-telegram.com/msu_mathlog/215
Create:
Last Update:

#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 23 апреля в 14:00.
В рамках этого семинара пройдет предзащита докторской диссертации Рыбакова М.Н.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идёте на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Михаил Николаевич Рыбаков (ВШМ МФТИ)

Название: Моделирование логических систем средствами их фрагментов (предзащита докторской диссертации)

Аннотация:
Проведённое исследование связано с выразительностью языков, логик и теорий, и прежде всего с алгоритмической выразительностью (в том числе вычислительной сложностью) определённых их фрагментов.

Многие естественные логические системы либо алгоритмически неразрешимы (причём иногда сильно неразрешимы), либо, будучи разрешимыми, имеют высокую сложность проблемы разрешения. Известно, что определённые ограничения, накладываемые на средства языка, аксиоматику или используемую семантику, приводят к изменению алгоритмической сложности тех или иных задач. В то же время иногда это не так: например, в неклассических логиках как неразрешимость, так и высокая сложность проблемы разрешения в случае разрешимости могут получаться при очень сильных ограничениях на средства языка.

Представляется актуальным не только нахождение границ, в рамках которых подобные проблемы оказываются алгоритмически простыми или наоборот остаются алгоритмически сложными, но и разработка общих методов, позволяющих получать оценки алгоритмической сложности фрагментов не только отдельных логических систем, а всех систем тех или иных бесконечных классов. Вместе с методами хотелось бы иметь общие признаки или критерии, позволяющие относительно просто делать вывод об алгоритмической сложности тех или иных фрагментов интересующей нас системы или хотя бы о потенциальной возможности или невозможности применения этих методов.

Основная цель работы состоит в том, чтобы развить общие методы моделирования алгоритмически сложных проблем внутри логик и теорий, используя минимальные средства языка. В частности, в работе предложены методы моделирования полных языков средствами их очень бедных фрагментов. К средствам языка, которые минимизируются, в первую очередь относятся следующие: число пропозициональных переменных в пропозициональных языках, число предметных переменных, а также число и валентность предикатных букв в языках первого порядка. Рассматриваются и некоторые ограничения на использование логических связок и кванторов.

В докладе будет дан обзор результатов, которые были получены автором в этом направлении. Будут коротко описаны методы их получения, а также возможные дальнейшие продвижения.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/215

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from de


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American