Telegram Group & Telegram Channel
Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding



group-telegram.com/def_model_train/1036
Create:
Last Update:

Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding

BY я обучала одну модель




Share with your friend now:
group-telegram.com/def_model_train/1036

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from us


Telegram я обучала одну модель
FROM American