Telegram Group & Telegram Channel
Language models can explain neurons in language models 🤔

Очень крутая и очень интерактивная статья про explainable ai. Советую всем открыть и потыкать:
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

В чем идея:
1. Берем исследуюемую модель и какой-то фиксированный датасет. Собираем инфу о том, какие нейроны как сильно активируются на каждом токене. Далее по этой информации просим GPT-4 для каждого нейрона предположить, за что он отвечает
2. Далее симулирем поведение этого нейрона, исходя из его предполагаемого назначения. Передаем в ту же GPT-4 описание, что этот нейрон якобы делает, кусок текста, и просим предсказать, какой силы активация должна у этого нейрона быть на последнем токене последовательности
3. Прогоняем этот текст через исследуемую модель и смотрим, какие активации у каких нейронов реально получились. Считаем скор, насколько предположение GPT-4 оказалось точным

Авторы исследовали GPT-2 XL и в целом для большей части нейронов ни GPT-4, ни человеческим разметчикам не удалось точно предполжить, что они делают. Но нашлись 1000+ нейронов, для которых удалось предсказать объяснение с точностью 0.8+. Еще авторы находят, что часто нейроны полисемантичны, и гораздо большую точность можно получить, если брать линейные комбинации от наиболее «ярких» нейронов

Как я уже написала, самая крутая чать работы – интерактивная
- Есть сниппет текста, где для каждого слова можно посмотреть, какие нейроны на него реагируют, какое им дано объяснение и к какому семантическому кластеру они относятся
– И есть neuron viewer, где для каждого нейрона GPT-2 можно посмотреть его объяснение и все токены в датасете, на которые он реагирует. Можно предложить и свое объяснение его поведения, так что мб так и накраудсорсится 🥳

Там же перечислен набор нейронов, которые кажется были хорошо объяснены. Например, авторы нашли отдельный нейрон для Канады, нейрон для улыбок и даже абстрактные нейроны про «doing things right» и «certainty»
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/def_model_train/942
Create:
Last Update:

Language models can explain neurons in language models 🤔

Очень крутая и очень интерактивная статья про explainable ai. Советую всем открыть и потыкать:
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

В чем идея:
1. Берем исследуюемую модель и какой-то фиксированный датасет. Собираем инфу о том, какие нейроны как сильно активируются на каждом токене. Далее по этой информации просим GPT-4 для каждого нейрона предположить, за что он отвечает
2. Далее симулирем поведение этого нейрона, исходя из его предполагаемого назначения. Передаем в ту же GPT-4 описание, что этот нейрон якобы делает, кусок текста, и просим предсказать, какой силы активация должна у этого нейрона быть на последнем токене последовательности
3. Прогоняем этот текст через исследуемую модель и смотрим, какие активации у каких нейронов реально получились. Считаем скор, насколько предположение GPT-4 оказалось точным

Авторы исследовали GPT-2 XL и в целом для большей части нейронов ни GPT-4, ни человеческим разметчикам не удалось точно предполжить, что они делают. Но нашлись 1000+ нейронов, для которых удалось предсказать объяснение с точностью 0.8+. Еще авторы находят, что часто нейроны полисемантичны, и гораздо большую точность можно получить, если брать линейные комбинации от наиболее «ярких» нейронов

Как я уже написала, самая крутая чать работы – интерактивная
- Есть сниппет текста, где для каждого слова можно посмотреть, какие нейроны на него реагируют, какое им дано объяснение и к какому семантическому кластеру они относятся
– И есть neuron viewer, где для каждого нейрона GPT-2 можно посмотреть его объяснение и все токены в датасете, на которые он реагирует. Можно предложить и свое объяснение его поведения, так что мб так и накраудсорсится 🥳

Там же перечислен набор нейронов, которые кажется были хорошо объяснены. Например, авторы нашли отдельный нейрон для Канады, нейрон для улыбок и даже абстрактные нейроны про «doing things right» и «certainty»

BY я обучала одну модель




Share with your friend now:
group-telegram.com/def_model_train/942

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis."
from us


Telegram я обучала одну модель
FROM American