Telegram Group & Telegram Channel
Forwarded from NLP Wanderer
О неочевидном поведении DPO и улучшениях SMPO в новой SLM от VIkhrModels

Недавно вышедшая QVikhr-2.5-1.5B-Instruct-SMPO, отличается не только лучшим качеством среди наших небольших тюнов, сопоставимым местами с 7B моделями, но и улучшениями в нашем методе алайнмента SMPO.

В ходе большого количества экспериментов я заметил, что офлайновая DPO-like (любая, в том числе и SMPO, ORPO, SimPO и тд) тренировка, часто при обучении может приводить к вырожденным решениям, например, таким, где модель теряет EOS токен при генерации и уходит в повторения или просто в генерацию сломанных токенов.

После небольшого расследования выяснилось, что частично такое поведение объяснимо поведением логарифма при вычислении логпробов токенов (картинка 1), которые в свою очередь участвуют в вычислении ревордов, разница между которыми и оптимизируется в DPO. Вычисляя логарифм чисел в районе 0, вы легко можете получить неограниченное падение логпроба в минус бесконечность. В случае DPO вы эти логпробы потом складываете, в случае SMPO они усредяются по всему комплишену. И в том и в другом случае, вы не спасаетесь от возможных значений-выбросов на конкретных токенах.

Если говорить более простыми словами - если ваш rejected содержит какието очевидные закономерности в токенах, которые его отличают от chosen, то модель через DPO может научится занижать логпробы именно этих токенов в минус бесконечность (т.е. обнулять вероятность) и выигрывать тем самым objective DPO, при этом для более "умных" последовательностей токенов, которые вы хотели бы тоже выучить, оптимизация может вобще не произойти, приводя к довольно тупым результатам, частое из которых это занизить логпроб EOS токена на всех rejected, тем самым почти уничтожив вероятность его генерации на OOD примерах - получаем проблему бесконечных повторений.

Конечно, такое поведение связано с плохой регуляризацией в RL. Выбор меньшего lr, уменьшение гипермараметра beta (в dpo), использование KL (как в DPO) или rejected и chosen SFT амортизации (как в SMPO), лучший выбор модели (какие-то меньше подвержены), использование model merging между SFT и PO стадиями тренировки, в целом обучение не до конца, частично помогает бороться с таким хаком обжектива. При тренировке Vikhr-Nemo было проведено немало экспериментов с гиперпараметрами, но проблема не была полностью вылечена.

В итоге, для тренировки наших следующих моделей мы теперь используем модифицированную версию SMPO (картинка 2), в которой было решено ввести штраф на занижение EOS токена для rejected комплишенов, а также сделать винзоризацию и клиппинг экстремальных значений логпробов, что позволило частично решить проблему нежелательного переобучения.

Модифицированный SMPO и конфиги обучения уже доступны в нашей библиотеке Effective LLM Alignment
🤗8🍌2🤡1



group-telegram.com/LakoMoorDev/1121
Create:
Last Update:

О неочевидном поведении DPO и улучшениях SMPO в новой SLM от VIkhrModels

Недавно вышедшая QVikhr-2.5-1.5B-Instruct-SMPO, отличается не только лучшим качеством среди наших небольших тюнов, сопоставимым местами с 7B моделями, но и улучшениями в нашем методе алайнмента SMPO.

В ходе большого количества экспериментов я заметил, что офлайновая DPO-like (любая, в том числе и SMPO, ORPO, SimPO и тд) тренировка, часто при обучении может приводить к вырожденным решениям, например, таким, где модель теряет EOS токен при генерации и уходит в повторения или просто в генерацию сломанных токенов.

После небольшого расследования выяснилось, что частично такое поведение объяснимо поведением логарифма при вычислении логпробов токенов (картинка 1), которые в свою очередь участвуют в вычислении ревордов, разница между которыми и оптимизируется в DPO. Вычисляя логарифм чисел в районе 0, вы легко можете получить неограниченное падение логпроба в минус бесконечность. В случае DPO вы эти логпробы потом складываете, в случае SMPO они усредяются по всему комплишену. И в том и в другом случае, вы не спасаетесь от возможных значений-выбросов на конкретных токенах.

Если говорить более простыми словами - если ваш rejected содержит какието очевидные закономерности в токенах, которые его отличают от chosen, то модель через DPO может научится занижать логпробы именно этих токенов в минус бесконечность (т.е. обнулять вероятность) и выигрывать тем самым objective DPO, при этом для более "умных" последовательностей токенов, которые вы хотели бы тоже выучить, оптимизация может вобще не произойти, приводя к довольно тупым результатам, частое из которых это занизить логпроб EOS токена на всех rejected, тем самым почти уничтожив вероятность его генерации на OOD примерах - получаем проблему бесконечных повторений.

Конечно, такое поведение связано с плохой регуляризацией в RL. Выбор меньшего lr, уменьшение гипермараметра beta (в dpo), использование KL (как в DPO) или rejected и chosen SFT амортизации (как в SMPO), лучший выбор модели (какие-то меньше подвержены), использование model merging между SFT и PO стадиями тренировки, в целом обучение не до конца, частично помогает бороться с таким хаком обжектива. При тренировке Vikhr-Nemo было проведено немало экспериментов с гиперпараметрами, но проблема не была полностью вылечена.

В итоге, для тренировки наших следующих моделей мы теперь используем модифицированную версию SMPO (картинка 2), в которой было решено ввести штраф на занижение EOS токена для rejected комплишенов, а также сделать винзоризацию и клиппинг экстремальных значений логпробов, что позволило частично решить проблему нежелательного переобучения.

Модифицированный SMPO и конфиги обучения уже доступны в нашей библиотеке Effective LLM Alignment

BY LakoMoor





Share with your friend now:
group-telegram.com/LakoMoorDev/1121

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy."
from es


Telegram LakoMoor
FROM American