Telegram Group & Telegram Channel
📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/lightautoml/182
Create:
Last Update:

📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор

BY LightAutoML framework




Share with your friend now:
group-telegram.com/lightautoml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon."
from es


Telegram LightAutoML framework
FROM American