Telegram Group & Telegram Channel
When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models

Довольно изящный механизм комбинирования ранее известных видов оптимизации скорости вычислений трансформера, которые были известны ранее

Сейчас я говорю о:

🩰Speculative Sampling (link): идея в распаралелливании авторегрессионой задачи через использовании одной легковестной модели (черновой) и более крупной и "умной" (целевой). В то время, как малютка черновая генерирует некоторое количество токенок, целевая проходится параллельно по выборке и оценивает качество, проверяя, насколько эти токены соответствуют её распределению

🩰Linear Attentions, LAs (link): в attention есть дорогостоящая операция измерения сходства каждого токена с каждым через softmax. Мы можем заменить функцию на более дешевую операцию через ядерное встраивание.

По сути меняем softmax(Q*K^T) на f(Q) * f(K), преобразованные через ядерную функцию, которая “проецирует” их в новое пространство. Таким образом, схожесть между запросами и ключами вычисляется не в исходном пространстве, а в этом новом пространстве признаков. (я хз как в тг это написать красивее, прошу понять и простить)

🩰Grouped Linear Attention: когда мы разделяем входную последовательность на независимые группы токенов. В пределах каждой группы локальные зависимости могут обрабатываться параллельно, что значительно ускоряет вычисления. Уже нечто схожее упоминалось в стаье Grouped-Query Attention (GQA). Идея разбиения информации для эффективной обработки длинных последовательностей также модифицировано прослеживает в Linformer (link), Longformer (link) и LongNet (tg link)

🏃‍♂️В общем то в первой части исходной статьи авторы замеряют на работает LAs на разных архитектурах (encoder-only, decoder-only, encoder-decoder). Сюрприх-сюрприз: приходят к выводам, что:

💛Linear Attention значительно ускоряет обучение, но показывает себя не настолько эффективно на инференсе авторегрессионной задачи
💛Линейное внимание приводит к уменьшению latency до 56% и снижению потребления памяти до 37%
💛Линейное внимание плохо учитывает последовательные временные зависимости токенов. Это приводит к “утечке информации” (information leakage), когда модель может случайно получить доступ к будущим токенам

👍Эти выводы они использует, как аргумент к комбинации многих из выше описанных подходов и добавления своих механизмов для борьбы с information leakage:

🩰Augmentation: Предлагают маскированную глубинную свёртку (masked DWConv) как способ улучшить линейное внимание, обеспечив, чтобы каждый токен мог учитывать только предыдущие токены, сохраняя причинно-следственные связи
🩰Используют Grouped Linear Attention. Для каждой группы вычисляются суммы произведений ключей и значений (KV cumsum), что позволяет минимизировать вычислительные зависимости между группами и повысить эффективность
🩰Как все уже могли догадаться, используют Speculative Sampling, чтобы повысить эффективность Linear Attention при инференсе
🩰 Unfolded: В Speculative Sampling, для корректной работы с несколькими кандидатами токенов одновременно, они предлагают “разворачивать” свёртки по времени с помощью техники, похожей на img2col, используемую в cv. Это позволяет свёрткам корректно учитывать временные зависимости

📖Статья
🖥Код
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍73



group-telegram.com/nadlskom/472
Create:
Last Update:

When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models

Довольно изящный механизм комбинирования ранее известных видов оптимизации скорости вычислений трансформера, которые были известны ранее

Сейчас я говорю о:

🩰Speculative Sampling (link): идея в распаралелливании авторегрессионой задачи через использовании одной легковестной модели (черновой) и более крупной и "умной" (целевой). В то время, как малютка черновая генерирует некоторое количество токенок, целевая проходится параллельно по выборке и оценивает качество, проверяя, насколько эти токены соответствуют её распределению

🩰Linear Attentions, LAs (link): в attention есть дорогостоящая операция измерения сходства каждого токена с каждым через softmax. Мы можем заменить функцию на более дешевую операцию через ядерное встраивание.

По сути меняем softmax(Q*K^T) на f(Q) * f(K), преобразованные через ядерную функцию, которая “проецирует” их в новое пространство. Таким образом, схожесть между запросами и ключами вычисляется не в исходном пространстве, а в этом новом пространстве признаков. (я хз как в тг это написать красивее, прошу понять и простить)

🩰Grouped Linear Attention: когда мы разделяем входную последовательность на независимые группы токенов. В пределах каждой группы локальные зависимости могут обрабатываться параллельно, что значительно ускоряет вычисления. Уже нечто схожее упоминалось в стаье Grouped-Query Attention (GQA). Идея разбиения информации для эффективной обработки длинных последовательностей также модифицировано прослеживает в Linformer (link), Longformer (link) и LongNet (tg link)

🏃‍♂️В общем то в первой части исходной статьи авторы замеряют на работает LAs на разных архитектурах (encoder-only, decoder-only, encoder-decoder). Сюрприх-сюрприз: приходят к выводам, что:

💛Linear Attention значительно ускоряет обучение, но показывает себя не настолько эффективно на инференсе авторегрессионной задачи
💛Линейное внимание приводит к уменьшению latency до 56% и снижению потребления памяти до 37%
💛Линейное внимание плохо учитывает последовательные временные зависимости токенов. Это приводит к “утечке информации” (information leakage), когда модель может случайно получить доступ к будущим токенам

👍Эти выводы они использует, как аргумент к комбинации многих из выше описанных подходов и добавления своих механизмов для борьбы с information leakage:

🩰Augmentation: Предлагают маскированную глубинную свёртку (masked DWConv) как способ улучшить линейное внимание, обеспечив, чтобы каждый токен мог учитывать только предыдущие токены, сохраняя причинно-следственные связи
🩰Используют Grouped Linear Attention. Для каждой группы вычисляются суммы произведений ключей и значений (KV cumsum), что позволяет минимизировать вычислительные зависимости между группами и повысить эффективность
🩰Как все уже могли догадаться, используют Speculative Sampling, чтобы повысить эффективность Linear Attention при инференсе
🩰 Unfolded: В Speculative Sampling, для корректной работы с несколькими кандидатами токенов одновременно, они предлагают “разворачивать” свёртки по времени с помощью техники, похожей на img2col, используемую в cv. Это позволяет свёрткам корректно учитывать временные зависимости

📖Статья
🖥Код

BY что-то на DL-ском







Share with your friend now:
group-telegram.com/nadlskom/472

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Anastasia Vlasova/Getty Images The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from es


Telegram что-то на DL-ском
FROM American