group-telegram.com/experiment_ai/45
Last Update:
Разметка 100 000 финансовых новостей: с нуля до полного решения за 20 минут с помощью vide coding
Задача: есть набор новостей, которые необходимо разметить тегами по темам, существенно влияющим на компании из индекса S&P500.
Шаг 1: просим GPT топ релевантных тегов
Просим GPT сформировать список не более чем из 10 тегов для разметки новостей. Получаем:
- Corporate Earnings
- M&A
- Regulatory/Legal
- Technology/Innovation
- Global Macro/Geopolitics
- Financial Markets/Investmens
- Capital Flows/Financing
- Market Sentiment
- Emerging Trends
- Если ни один не подходит, то ставим Non-Financial
Шаг 2: Создаём Structured Output схему
Чтобы всегда получать нужный нам формат ответа от LLM, просим GPT задать жесткую схему Structured Output.
Шаг 3: С помощью GPT пишем код
Просим написать функцию, которая итеративно проходит по каждой новости из датасета и отдает набор тегов.
Тестируем, логи ошибок отправляем к GPT, дорабатываем код на основе его ответов. Через 5-10 минут отладки код уже полностью рабочий, отлично!
Результаты:
- Код и разметка готовы за 15-20 минут
- Средняя стоимость разметки новости по заголовку (GPT4o-mini): 0.033 ₽
- По полному тексту новости: 0.114 ₽
- Итого, весь набор из 100 000 новостей обходится от 3 330 ₽ (по заголовкам) до 11 500 ₽ (по полным текстам).
Не сравнить, конечно, с ручной разметкой, которая сильно дольше и дороже!
Что дальше?
В реальном проекте, конечно же, важно:
- добавить эталонную разметку, чтобы можно было быстро валидировать качество разметки на основе LLM;
- искать баланс между стоимостью и качеством. Ведь если в датасете 100к строк и разметить нужно один раз, то текущая стоимость приемлема, но если в датасете 1млн строк, или нужно обновлять теги динамически, то нужно уже придумывать другие решения.
Ссылка на Colab: здесь
Ссылка на Gitlab: здесь
BY Эксперименты с ИИ

Share with your friend now:
group-telegram.com/experiment_ai/45