Telegram Group & Telegram Channel
Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/11
Create:
Last Update:

Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from fr


Telegram Kitty Bytes AI
FROM American