Telegram Group & Telegram Channel
💎NANOMINER: MULTIMODAL INFORMATION EXTRACTION FOR NANOMATERIALS

Была я тут на ICLR неделю назад, мне лично было очень весело. Естественно мне запомнились доклады, статьи и тд, но соберу я это в пост явно не сейчас. Первое, что хочу запостить сюда по этой теме – это тот факт, что вообще-то я туда приезжала не только пить, изучать интересные статьи и смотреть город, а еще стоять со своим постером!

Мы с коллегами❤️ из ИТМО подались хайпу LLM агентов и прочего, но при этом решили важную проблему

Наш доменный эксперт Сабина:

С точки зрения химика, главная проблема — не в недостатке ИИ, а в том, что большинство инструментов не понимают, как устроены научные статьи. Чтобы спланировать синтез и проверить свойства вещества, приходится вручную вычитывать десятки источников, искать куски данных, раскиданные по графикам, таблицам и тексту. LLM тут часто бессильны: они не умеют отличать разные серии экспериментов или связать численные параметры с описанием синтеза.


Что мы имеем по итогу статьи:
💛Собрали мультиагентную систему с ReAct-координатором, который управляет текстовым (LLM на NER задачу, aka доп эксперт) и визуальным (YOLO+4O) агентами
💛Автоматизировали сбор датасетов по нанозимам, ранее вручную собираемых экспертами
💛Достигли точности 0.98 по числовым параметрам и высокого качества по текстовым

Как работает:
💛PDF → текст и изображения через pdfplumber и pytesseract.
💛Текст разбивается на чанки по 2048 токенов (потому что мы бедные, забейте) для NER-агента; а визуальный агент на GPT-4o обрабатывает графики и таблицы целиком для восстановления структурной логики статьи
💛У каждого агента чёткая зона ответственности и формат ответа

Интересные факты
Я занималась текстовым агентом, поэтому вот мои наблюдения: мы сравнили Mistral и Llama и по моим наблюдениям вторая чаще пытается избежать FP, что докидывает в качестве

Это всего лишь short paper и нам не удалось целостно раскрыть детали работы в нем на столько, на сколько мы желаем. Поэтому ждем апрув в npj Computational Materials😎, чтобы поделиться полной версией. Также планируем доработки на следующие конфы, в которых расширим покрытие тем статей и адаптацию агентов к новым параметрам и доменам🤫

📖Папир тут
🖥Код
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥30124👍1💅1



group-telegram.com/nadlskom/559
Create:
Last Update:

💎NANOMINER: MULTIMODAL INFORMATION EXTRACTION FOR NANOMATERIALS

Была я тут на ICLR неделю назад, мне лично было очень весело. Естественно мне запомнились доклады, статьи и тд, но соберу я это в пост явно не сейчас. Первое, что хочу запостить сюда по этой теме – это тот факт, что вообще-то я туда приезжала не только пить, изучать интересные статьи и смотреть город, а еще стоять со своим постером!

Мы с коллегами❤️ из ИТМО подались хайпу LLM агентов и прочего, но при этом решили важную проблему

Наш доменный эксперт Сабина:

С точки зрения химика, главная проблема — не в недостатке ИИ, а в том, что большинство инструментов не понимают, как устроены научные статьи. Чтобы спланировать синтез и проверить свойства вещества, приходится вручную вычитывать десятки источников, искать куски данных, раскиданные по графикам, таблицам и тексту. LLM тут часто бессильны: они не умеют отличать разные серии экспериментов или связать численные параметры с описанием синтеза.


Что мы имеем по итогу статьи:
💛Собрали мультиагентную систему с ReAct-координатором, который управляет текстовым (LLM на NER задачу, aka доп эксперт) и визуальным (YOLO+4O) агентами
💛Автоматизировали сбор датасетов по нанозимам, ранее вручную собираемых экспертами
💛Достигли точности 0.98 по числовым параметрам и высокого качества по текстовым

Как работает:
💛PDF → текст и изображения через pdfplumber и pytesseract.
💛Текст разбивается на чанки по 2048 токенов (потому что мы бедные, забейте) для NER-агента; а визуальный агент на GPT-4o обрабатывает графики и таблицы целиком для восстановления структурной логики статьи
💛У каждого агента чёткая зона ответственности и формат ответа

Интересные факты
Я занималась текстовым агентом, поэтому вот мои наблюдения: мы сравнили Mistral и Llama и по моим наблюдениям вторая чаще пытается избежать FP, что докидывает в качестве

Это всего лишь short paper и нам не удалось целостно раскрыть детали работы в нем на столько, на сколько мы желаем. Поэтому ждем апрув в npj Computational Materials😎, чтобы поделиться полной версией. Также планируем доработки на следующие конфы, в которых расширим покрытие тем статей и адаптацию агентов к новым параметрам и доменам🤫

📖Папир тут
🖥Код

BY что-то на DL-ском







Share with your friend now:
group-telegram.com/nadlskom/559

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from fr


Telegram что-то на DL-ском
FROM American