Telegram Group & Telegram Channel
Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.



group-telegram.com/partially_unsupervised/243
Create:
Last Update:

Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/243

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever."
from fr


Telegram partially unsupervised
FROM American