Telegram Group & Telegram Channel
Как реализован dict в интерпретаторе Python

Словарь (ассоциативный массив / хэш-таблица / dict) — это такая замечательная структура данных в Python, которая поддерживает обращение, вставку и удаление в среднем за константное время O(1).

Возьмем в качестве примера словарь, который отображает реальное имя человека в его игровой никнейм.

nickname = {
"Gena": "Машина",
"Ivan": 12,
"Vazgen": "Gorniy Orel 228"
}


Визуально очень похоже на JSON. Ключами выступают "Gena", "Ivan", значениями "Машина", 12 и тд. Причем последние могут быть чем угодно: объектами, числами, строками, списками, словарями.

Ключи же должны быть хэшируемыми типами данных — такими, у которых определен метод __hash__. Обычно эти объекты являются неизменяемыми. Т.е. tuple может выступать в качестве ключа, а list — нет. Хотя в пользовательских классах можно наворотить все что угодно.

Что происходит на уровне интерпретатора CPython при добавлении нового ключа? Например, мы выполнили строчку nickname["Dima"] = "Арчибальд Шпицен-Дроссель".

На уровне C есть просто два массива фиксированной длины: dk_indices — хранит индексы и dk_entries — хранит пары ключ-значение, плюс несколько вспомогательных полей с размером самого словаря, типами данных и тд.

При вставке для объекта "Dima" вызывается функция PyObject_Hash, которая залезает в PyTypeObject — структуру с основными свойствами объекта (в Python все есть объект) и находит там хэш-функцию unicode_hash (строки из примера под капотом unicode). Применяя ее к "Dima", получает некоторое большое по модулю число. Кстати, сложность хэширования O(k), но мы предполагаем, что длина ключей в среднем сильно меньше размера словаря k << n.

Чтобы найти слот для hash("Dima") в dk_indices, берется остаток от деления на длину dk_indices. Если соответствующая ячейка в массиве пуста, то в dk_entries добавляется пара ("Dima", "Арчибальд Шпицен-Дроссель"). Если же ячейка занята, это означает что произошла коллизия. В простейшем случае можно было бы хранить в dk_entries не просто ключ-значение, а связный список из ключей и значений. Тогда при коллизиях мы бы просто делали append в конец списка.

Но в CPython используется алгоритм сдвига с пертурбацией. В случае коллизии он вычисляет новый индекс по формуле
    perturb >>= PERTURB_SHIFT;
j = (5*j) + 1 + perturb;
use j % 2**i as the next table index;

И повторяет процедуру до тех пор, пока не найдет свободную ячейку.

Такие дела. Все вышеперечисленное не претендует на истину в последней инстанции. Там еще есть PyDictKeyEntry vs PyDictUnicodeEntry, 6000 строк реализации dictobject.c и куча прочих нюансов. Но основная идея такая, если я нигде не наврал. А если наврал, пишите замечания в комментариях!



group-telegram.com/savostyanov_dmitry/491
Create:
Last Update:

Как реализован dict в интерпретаторе Python

Словарь (ассоциативный массив / хэш-таблица / dict) — это такая замечательная структура данных в Python, которая поддерживает обращение, вставку и удаление в среднем за константное время O(1).

Возьмем в качестве примера словарь, который отображает реальное имя человека в его игровой никнейм.

nickname = {
"Gena": "Машина",
"Ivan": 12,
"Vazgen": "Gorniy Orel 228"
}


Визуально очень похоже на JSON. Ключами выступают "Gena", "Ivan", значениями "Машина", 12 и тд. Причем последние могут быть чем угодно: объектами, числами, строками, списками, словарями.

Ключи же должны быть хэшируемыми типами данных — такими, у которых определен метод __hash__. Обычно эти объекты являются неизменяемыми. Т.е. tuple может выступать в качестве ключа, а list — нет. Хотя в пользовательских классах можно наворотить все что угодно.

Что происходит на уровне интерпретатора CPython при добавлении нового ключа? Например, мы выполнили строчку nickname["Dima"] = "Арчибальд Шпицен-Дроссель".

На уровне C есть просто два массива фиксированной длины: dk_indices — хранит индексы и dk_entries — хранит пары ключ-значение, плюс несколько вспомогательных полей с размером самого словаря, типами данных и тд.

При вставке для объекта "Dima" вызывается функция PyObject_Hash, которая залезает в PyTypeObject — структуру с основными свойствами объекта (в Python все есть объект) и находит там хэш-функцию unicode_hash (строки из примера под капотом unicode). Применяя ее к "Dima", получает некоторое большое по модулю число. Кстати, сложность хэширования O(k), но мы предполагаем, что длина ключей в среднем сильно меньше размера словаря k << n.

Чтобы найти слот для hash("Dima") в dk_indices, берется остаток от деления на длину dk_indices. Если соответствующая ячейка в массиве пуста, то в dk_entries добавляется пара ("Dima", "Арчибальд Шпицен-Дроссель"). Если же ячейка занята, это означает что произошла коллизия. В простейшем случае можно было бы хранить в dk_entries не просто ключ-значение, а связный список из ключей и значений. Тогда при коллизиях мы бы просто делали append в конец списка.

Но в CPython используется алгоритм сдвига с пертурбацией. В случае коллизии он вычисляет новый индекс по формуле
    perturb >>= PERTURB_SHIFT;
j = (5*j) + 1 + perturb;
use j % 2**i as the next table index;

И повторяет процедуру до тех пор, пока не найдет свободную ячейку.

Такие дела. Все вышеперечисленное не претендует на истину в последней инстанции. Там еще есть PyDictKeyEntry vs PyDictUnicodeEntry, 6000 строк реализации dictobject.c и куча прочих нюансов. Но основная идея такая, если я нигде не наврал. А если наврал, пишите замечания в комментариях!

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/491

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from fr


Telegram Дмитрий Савостьянов Вещает
FROM American