Telegram Group & Telegram Channel
Праздники и отпуск прошли, теперь пора и что-нибудь интересное разобрать. Впереди 9 часов в поезде и много отложенных статей — вечер обеспечен 🏃

Начнем с The Lessons of Developing Process Reward Models in Mathematical Reasoning. Исследование от команды Qwen на тему, как делать хорошие PRM (Process Reward Model) в математике, то есть модели, оценивающие промежуточные рассуждения модели. Ребята в последнее время очень часто радуют не только классными моделями, но и качественными статьями.

Для того, чтобы тренировать модель оценивать шаги рассуждений, нам нужна разметка, где каждому такому шаг присвоена некоторая метка. Вариантов тут немного:

- Использовать LLM-as-a-judge (просим другую модель оценить шаг) или ручную разметку.
- Использовать monte-carlo (MC) оценку шага, то есть для оценки шага делаем из него множество продолжений и смотрим, сколько из них завершились успехом. Метку можно определить как a) soft label — доля успешных продолжений или b) hard label — 1, если хотя бы одно продолжение успешно и 0 иначе.

Авторы делают большое кол-во экспериментов, из которых формулируют много интересных тезисов, например:

- MC методы неявно закладывают смысл value функции в оценку шага, то есть оценивают перспективность состояния для будущего решения задачи. Это может накладывать ограничения в умения модели находить неверные шаги.
- MC методы имеют меньший прирост качества от скейлинга данных по сравнению с LLM-as-a-judge и human annotation.
- Большая проблема MC методов заключается в том, что модели склонны решать задачи даже со множеством ошибок в рассуждениях. Это приводит к артефактам во время инференса.

Это только малая часть, в статье намного больше мыслей, подкрепленных обильными экспериментами, рекомендую почитать всем интересующимся реворд моделями.

Далее авторы предлагают алгоритм “консенсуса” между MC методом и LLM-as-a-judge, обученные модели показывают соту на математических бенчмарках и выложены в опенсурс (7B и 72B)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/AIexTime/105
Create:
Last Update:

Праздники и отпуск прошли, теперь пора и что-нибудь интересное разобрать. Впереди 9 часов в поезде и много отложенных статей — вечер обеспечен 🏃

Начнем с The Lessons of Developing Process Reward Models in Mathematical Reasoning. Исследование от команды Qwen на тему, как делать хорошие PRM (Process Reward Model) в математике, то есть модели, оценивающие промежуточные рассуждения модели. Ребята в последнее время очень часто радуют не только классными моделями, но и качественными статьями.

Для того, чтобы тренировать модель оценивать шаги рассуждений, нам нужна разметка, где каждому такому шаг присвоена некоторая метка. Вариантов тут немного:

- Использовать LLM-as-a-judge (просим другую модель оценить шаг) или ручную разметку.
- Использовать monte-carlo (MC) оценку шага, то есть для оценки шага делаем из него множество продолжений и смотрим, сколько из них завершились успехом. Метку можно определить как a) soft label — доля успешных продолжений или b) hard label — 1, если хотя бы одно продолжение успешно и 0 иначе.

Авторы делают большое кол-во экспериментов, из которых формулируют много интересных тезисов, например:

- MC методы неявно закладывают смысл value функции в оценку шага, то есть оценивают перспективность состояния для будущего решения задачи. Это может накладывать ограничения в умения модели находить неверные шаги.
- MC методы имеют меньший прирост качества от скейлинга данных по сравнению с LLM-as-a-judge и human annotation.
- Большая проблема MC методов заключается в том, что модели склонны решать задачи даже со множеством ошибок в рассуждениях. Это приводит к артефактам во время инференса.

Это только малая часть, в статье намного больше мыслей, подкрепленных обильными экспериментами, рекомендую почитать всем интересующимся реворд моделями.

Далее авторы предлагают алгоритм “консенсуса” между MC методом и LLM-as-a-judge, обученные модели показывают соту на математических бенчмарках и выложены в опенсурс (7B и 72B)

BY AI[ex]Time


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/AIexTime/105

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. READ MORE
from hk


Telegram AI[ex]Time
FROM American