Telegram Group & Telegram Channel
Complex Systems Studies
Homophily Within and Across Groups If you are looking for a network model that distinguishes between [local] homophily within small groups and [global] homophily across larger, more diverse communities, you shall not miss our new pre-print: https://arxi…
How do similarities shape our connections—and what does that mean for spreading ideas, trends, or diseases?

Traditional models assume a simple rule: people connect with others like them. But our research goes further. We’ve created a model that separates local homophily—strong bonds within close-knit groups—from global homophily, the weaker links across broader communities. This distinction helps explain complex social behaviors and how they impact network dynamics.

Using a maximum entropy approach, our model quantifies these layers of homophily and their influence on networks. One key finding is that different levels of homophily lead to unique percolation behaviors—shifts in how networks stay connected or fragment under certain conditions. We also discovered that these interactions affect critical thresholds for spreading phenomena, from viral outbreaks to information diffusion.

By applying our model to diverse real-world datasets, we demonstrated its ability to capture fine-grained patterns in networks. The insights go beyond theory—they have real implications for designing better public health interventions, optimizing information campaigns, and understanding the role of community structures in amplifying or limiting spread.

So, if you are looking for a network model that distinguishes between [local] homophily within small groups and [global] homophily across larger, more diverse communities, you shall not miss our new pre-print: https://arxiv.org/abs/2412.07901



group-telegram.com/ComplexSys/5803
Create:
Last Update:

How do similarities shape our connections—and what does that mean for spreading ideas, trends, or diseases?

Traditional models assume a simple rule: people connect with others like them. But our research goes further. We’ve created a model that separates local homophily—strong bonds within close-knit groups—from global homophily, the weaker links across broader communities. This distinction helps explain complex social behaviors and how they impact network dynamics.

Using a maximum entropy approach, our model quantifies these layers of homophily and their influence on networks. One key finding is that different levels of homophily lead to unique percolation behaviors—shifts in how networks stay connected or fragment under certain conditions. We also discovered that these interactions affect critical thresholds for spreading phenomena, from viral outbreaks to information diffusion.

By applying our model to diverse real-world datasets, we demonstrated its ability to capture fine-grained patterns in networks. The insights go beyond theory—they have real implications for designing better public health interventions, optimizing information campaigns, and understanding the role of community structures in amplifying or limiting spread.

So, if you are looking for a network model that distinguishes between [local] homophily within small groups and [global] homophily across larger, more diverse communities, you shall not miss our new pre-print: https://arxiv.org/abs/2412.07901

BY Complex Systems Studies


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ComplexSys/5803

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. 'Wild West' DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from hk


Telegram Complex Systems Studies
FROM American